You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
99 lines
3.4 KiB
99 lines
3.4 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import paddle
|
||
|
import paddle.nn as nn
|
||
|
import paddle.nn.functional as F
|
||
|
|
||
|
|
||
|
class FocalLossHX(nn.Layer):
|
||
|
def __init__(self, gamma=0, size_average=True):
|
||
|
super(FocalLoss, self).__init__()
|
||
|
self.gamma = gamma
|
||
|
self.size_average = size_average
|
||
|
|
||
|
def forward(self, input, target):
|
||
|
# print('input')
|
||
|
# print(input.shape)
|
||
|
# print(target.shape)
|
||
|
|
||
|
if input.dim() > 2:
|
||
|
input = paddle.reshape(
|
||
|
input,
|
||
|
shape=[input.size(0), input.size(1), -1]) # N,C,H,W => N,C,H*W
|
||
|
input = input.transpose(1, 2) # N,C,H*W => N,H*W,C
|
||
|
input = paddle.reshape(
|
||
|
input, shape=[-1, input.size(2)]) # N,H*W,C => N*H*W,C
|
||
|
target = paddle.reshape(target, shape=[-1])
|
||
|
|
||
|
logpt = F.log_softmax(input)
|
||
|
# print('logpt')
|
||
|
# print(logpt.shape)
|
||
|
# print(logpt)
|
||
|
|
||
|
# get true class column from each row
|
||
|
all_rows = paddle.arange(len(input))
|
||
|
# print(target)
|
||
|
log_pt = logpt.numpy()[all_rows.numpy(), target.numpy()]
|
||
|
|
||
|
pt = paddle.to_tensor(log_pt, dtype='float64').exp()
|
||
|
ce = F.cross_entropy(input, target, reduction='none')
|
||
|
# print('ce')
|
||
|
# print(ce.shape)
|
||
|
|
||
|
loss = (1 - pt)**self.gamma * ce
|
||
|
# print('ce:%f'%ce.mean())
|
||
|
# print('fl:%f'%loss.mean())
|
||
|
if self.size_average:
|
||
|
return loss.mean()
|
||
|
else:
|
||
|
return loss.sum()
|
||
|
|
||
|
|
||
|
class FocalLoss(nn.Layer):
|
||
|
"""
|
||
|
Focal Loss.
|
||
|
Code referenced from:
|
||
|
https://github.com/clcarwin/focal_loss_pytorch/blob/master/focalloss.py
|
||
|
Args:
|
||
|
gamma (float): the coefficient of Focal Loss.
|
||
|
ignore_index (int64): Specifies a target value that is ignored
|
||
|
and does not contribute to the input gradient. Default ``255``.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, gamma=2.0):
|
||
|
super(FocalLoss, self).__init__()
|
||
|
self.gamma = gamma
|
||
|
|
||
|
def forward(self, logit, label):
|
||
|
#####logit = F.softmax(logit)
|
||
|
# logit = paddle.reshape(
|
||
|
# logit, [logit.shape[0], logit.shape[1], -1]) # N,C,H,W => N,C,H*W
|
||
|
# logit = paddle.transpose(logit, [0, 2, 1]) # N,C,H*W => N,H*W,C
|
||
|
# logit = paddle.reshape(logit,
|
||
|
# [-1, logit.shape[2]]) # N,H*W,C => N*H*W,C
|
||
|
label = paddle.reshape(label, [-1, 1])
|
||
|
range_ = paddle.arange(0, label.shape[0])
|
||
|
range_ = paddle.unsqueeze(range_, axis=-1)
|
||
|
label = paddle.cast(label, dtype='int64')
|
||
|
label = paddle.concat([range_, label], axis=-1)
|
||
|
logpt = F.log_softmax(logit)
|
||
|
logpt = paddle.gather_nd(logpt, label)
|
||
|
|
||
|
pt = paddle.exp(logpt.detach())
|
||
|
loss = -1 * (1 - pt)**self.gamma * logpt
|
||
|
loss = paddle.mean(loss)
|
||
|
# print(loss)
|
||
|
# print(logpt)
|
||
|
return loss
|