You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
6.9 KiB
215 lines
6.9 KiB
2 years ago
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import argparse
|
||
|
import os
|
||
|
from concurrent.futures import ThreadPoolExecutor
|
||
|
from operator import itemgetter
|
||
|
from pathlib import Path
|
||
|
from typing import Any
|
||
|
from typing import Dict
|
||
|
from typing import List
|
||
|
|
||
|
import jsonlines
|
||
|
import librosa
|
||
|
import numpy as np
|
||
|
import tqdm
|
||
|
import yaml
|
||
|
from yacs.config import CfgNode
|
||
|
|
||
|
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
|
||
|
from paddlespeech.t2s.datasets.preprocess_utils import get_spk_id_map
|
||
|
|
||
|
speaker_set = set()
|
||
|
|
||
|
|
||
|
def process_sentence(config: Dict[str, Any],
|
||
|
fp: Path,
|
||
|
output_dir: Path,
|
||
|
mel_extractor=None):
|
||
|
utt_id = fp.stem
|
||
|
# for vctk
|
||
|
if utt_id.endswith("_mic2"):
|
||
|
utt_id = utt_id[:-5]
|
||
|
speaker = utt_id.split('_')[0]
|
||
|
speaker_set.add(speaker)
|
||
|
# 需要额外获取 speaker
|
||
|
record = None
|
||
|
# reading, resampling may occur
|
||
|
# 源码的 bug, 读取的时候按照 24000 读取,但是提取 mel 的时候按照 16000 提取
|
||
|
# 具体参考 https://github.com/PaddlePaddle/PaddleSpeech/blob/c7d24ba42c377fe4c0765c6b1faa202a9aeb136f/paddlespeech/t2s/exps/starganv2_vc/vc.py#L165
|
||
|
# 之后需要换成按照 24000 读取和按照 24000 提取 mel
|
||
|
wav, _ = librosa.load(str(fp), sr=24000)
|
||
|
max_value = np.abs(wav).max()
|
||
|
if max_value > 1.0:
|
||
|
wav = wav / max_value
|
||
|
assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio."
|
||
|
assert np.abs(
|
||
|
wav).max() <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
|
||
|
# extract mel feats
|
||
|
# 注意这里 base = 'e', 后续需要换成 base='10', 我们其他 TTS 模型都是 base='10'
|
||
|
logmel = mel_extractor.get_log_mel_fbank(wav, base='e')
|
||
|
mel_path = output_dir / (utt_id + "_speech.npy")
|
||
|
np.save(mel_path, logmel)
|
||
|
record = {"utt_id": utt_id, "speech": str(mel_path), "speaker": speaker}
|
||
|
return record
|
||
|
|
||
|
|
||
|
def process_sentences(
|
||
|
config,
|
||
|
fps: List[Path],
|
||
|
output_dir: Path,
|
||
|
mel_extractor=None,
|
||
|
nprocs: int=1, ):
|
||
|
if nprocs == 1:
|
||
|
results = []
|
||
|
for fp in tqdm.tqdm(fps, total=len(fps)):
|
||
|
record = process_sentence(
|
||
|
config=config,
|
||
|
fp=fp,
|
||
|
output_dir=output_dir,
|
||
|
mel_extractor=mel_extractor)
|
||
|
if record:
|
||
|
results.append(record)
|
||
|
else:
|
||
|
with ThreadPoolExecutor(nprocs) as pool:
|
||
|
futures = []
|
||
|
with tqdm.tqdm(total=len(fps)) as progress:
|
||
|
for fp in fps:
|
||
|
future = pool.submit(process_sentence, config, fp,
|
||
|
output_dir, mel_extractor)
|
||
|
future.add_done_callback(lambda p: progress.update())
|
||
|
futures.append(future)
|
||
|
|
||
|
results = []
|
||
|
for ft in futures:
|
||
|
record = ft.result()
|
||
|
if record:
|
||
|
results.append(record)
|
||
|
|
||
|
results.sort(key=itemgetter("utt_id"))
|
||
|
with jsonlines.open(output_dir / "metadata.jsonl", 'w') as writer:
|
||
|
for item in results:
|
||
|
writer.write(item)
|
||
|
print("Done")
|
||
|
|
||
|
|
||
|
def main():
|
||
|
# parse config and args
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description="Preprocess audio and then extract features.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--dataset",
|
||
|
default="vctk",
|
||
|
type=str,
|
||
|
help="name of dataset, should in {vctk} now")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--rootdir", default=None, type=str, help="directory to dataset.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--dumpdir",
|
||
|
type=str,
|
||
|
required=True,
|
||
|
help="directory to dump feature files.")
|
||
|
|
||
|
parser.add_argument("--config", type=str, help="StarGANv2VC config file.")
|
||
|
|
||
|
parser.add_argument(
|
||
|
"--num-cpu", type=int, default=1, help="number of process.")
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
rootdir = Path(args.rootdir).expanduser()
|
||
|
dumpdir = Path(args.dumpdir).expanduser()
|
||
|
# use absolute path
|
||
|
dumpdir = dumpdir.resolve()
|
||
|
dumpdir.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
assert rootdir.is_dir()
|
||
|
|
||
|
with open(args.config, 'rt') as f:
|
||
|
config = CfgNode(yaml.safe_load(f))
|
||
|
|
||
|
if args.dataset == "vctk":
|
||
|
sub_num_dev = 5
|
||
|
wav_dir = rootdir / "wav48_silence_trimmed"
|
||
|
train_wav_files = []
|
||
|
dev_wav_files = []
|
||
|
test_wav_files = []
|
||
|
# only for test
|
||
|
for speaker in os.listdir(wav_dir):
|
||
|
wav_files = sorted(list((wav_dir / speaker).rglob("*_mic2.flac")))
|
||
|
if len(wav_files) > 100:
|
||
|
train_wav_files += wav_files[:-sub_num_dev * 2]
|
||
|
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
|
||
|
test_wav_files += wav_files[-sub_num_dev:]
|
||
|
else:
|
||
|
train_wav_files += wav_files
|
||
|
|
||
|
else:
|
||
|
print("dataset should in {vctk} now!")
|
||
|
|
||
|
train_dump_dir = dumpdir / "train" / "raw"
|
||
|
train_dump_dir.mkdir(parents=True, exist_ok=True)
|
||
|
dev_dump_dir = dumpdir / "dev" / "raw"
|
||
|
dev_dump_dir.mkdir(parents=True, exist_ok=True)
|
||
|
test_dump_dir = dumpdir / "test" / "raw"
|
||
|
test_dump_dir.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
# Extractor
|
||
|
mel_extractor = LogMelFBank(
|
||
|
sr=config.fs,
|
||
|
n_fft=config.n_fft,
|
||
|
hop_length=config.n_shift,
|
||
|
win_length=config.win_length,
|
||
|
window=config.window,
|
||
|
n_mels=config.n_mels,
|
||
|
fmin=config.fmin,
|
||
|
fmax=config.fmax,
|
||
|
# None here
|
||
|
norm=config.norm,
|
||
|
htk=config.htk,
|
||
|
power=config.power)
|
||
|
|
||
|
# process for the 3 sections
|
||
|
if train_wav_files:
|
||
|
process_sentences(
|
||
|
config=config,
|
||
|
fps=train_wav_files,
|
||
|
output_dir=train_dump_dir,
|
||
|
mel_extractor=mel_extractor,
|
||
|
nprocs=args.num_cpu)
|
||
|
if dev_wav_files:
|
||
|
process_sentences(
|
||
|
config=config,
|
||
|
fps=dev_wav_files,
|
||
|
output_dir=dev_dump_dir,
|
||
|
mel_extractor=mel_extractor,
|
||
|
nprocs=args.num_cpu)
|
||
|
if test_wav_files:
|
||
|
process_sentences(
|
||
|
config=config,
|
||
|
fps=test_wav_files,
|
||
|
output_dir=test_dump_dir,
|
||
|
mel_extractor=mel_extractor,
|
||
|
nprocs=args.num_cpu)
|
||
|
|
||
|
speaker_id_map_path = dumpdir / "speaker_id_map.txt"
|
||
|
get_spk_id_map(speaker_set, speaker_id_map_path)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|