|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import soundfile as sf
|
|
|
|
from timer import timer
|
|
|
|
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_frontend
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_sentences
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_sess
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import run_frontend
|
|
|
|
from paddlespeech.t2s.utils import str2bool
|
|
|
|
|
|
|
|
|
|
|
|
def ort_predict(args):
|
|
|
|
|
|
|
|
# frontend
|
|
|
|
frontend = get_frontend(
|
|
|
|
lang=args.lang,
|
|
|
|
phones_dict=args.phones_dict,
|
|
|
|
tones_dict=args.tones_dict)
|
|
|
|
|
|
|
|
output_dir = Path(args.output_dir)
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
sentences = get_sentences(text_file=args.text, lang=args.lang)
|
|
|
|
|
|
|
|
am_name = args.am[:args.am.rindex('_')]
|
|
|
|
am_dataset = args.am[args.am.rindex('_') + 1:]
|
|
|
|
fs = 24000 if am_dataset != 'ljspeech' else 22050
|
|
|
|
|
|
|
|
am_sess = get_sess(
|
|
|
|
model_path=str(Path(args.inference_dir) / (args.am + '.onnx')),
|
|
|
|
device=args.device,
|
|
|
|
cpu_threads=args.cpu_threads,
|
|
|
|
use_trt=args.use_trt)
|
|
|
|
|
|
|
|
# vocoder
|
|
|
|
voc_sess = get_sess(
|
|
|
|
model_path=str(Path(args.inference_dir) / (args.voc + '.onnx')),
|
|
|
|
device=args.device,
|
|
|
|
cpu_threads=args.cpu_threads,
|
|
|
|
use_trt=args.use_trt)
|
|
|
|
|
|
|
|
merge_sentences = True
|
|
|
|
|
|
|
|
# frontend warmup
|
|
|
|
# Loading model cost 0.5+ seconds
|
|
|
|
if args.lang == 'zh':
|
|
|
|
frontend.get_input_ids(
|
|
|
|
"你好,欢迎使用飞桨框架进行深度学习研究!", merge_sentences=merge_sentences)
|
|
|
|
else:
|
|
|
|
frontend.get_input_ids(
|
|
|
|
"hello, thank you, thank you very much",
|
|
|
|
merge_sentences=merge_sentences)
|
|
|
|
|
|
|
|
# am warmup
|
|
|
|
spk_id = [args.spk_id]
|
|
|
|
for T in [27, 38, 54]:
|
|
|
|
am_input_feed = {}
|
|
|
|
if am_name == 'fastspeech2':
|
|
|
|
if args.lang == 'en':
|
|
|
|
phone_ids = np.random.randint(1, 78, size=(T, ))
|
|
|
|
else:
|
|
|
|
phone_ids = np.random.randint(1, 266, size=(T, ))
|
|
|
|
am_input_feed.update({'text': phone_ids})
|
|
|
|
if am_dataset in {"aishell3", "vctk", "mix", "canton"}:
|
|
|
|
am_input_feed.update({'spk_id': spk_id})
|
|
|
|
elif am_name == 'speedyspeech':
|
|
|
|
phone_ids = np.random.randint(1, 92, size=(T, ))
|
|
|
|
tone_ids = np.random.randint(1, 5, size=(T, ))
|
|
|
|
am_input_feed.update({'phones': phone_ids, 'tones': tone_ids})
|
|
|
|
am_sess.run(None, input_feed=am_input_feed)
|
|
|
|
|
|
|
|
# voc warmup
|
|
|
|
for T in [227, 308, 544]:
|
|
|
|
data = np.random.rand(T, 80).astype("float32")
|
|
|
|
voc_sess.run(None, input_feed={"logmel": data})
|
|
|
|
print("warm up done!")
|
|
|
|
|
|
|
|
N = 0
|
|
|
|
T = 0
|
|
|
|
merge_sentences = False
|
|
|
|
get_tone_ids = False
|
|
|
|
if am_name == 'speedyspeech':
|
|
|
|
get_tone_ids = True
|
|
|
|
am_input_feed = {}
|
|
|
|
for utt_id, sentence in sentences:
|
|
|
|
with timer() as t:
|
|
|
|
frontend_dict = run_frontend(
|
|
|
|
frontend=frontend,
|
|
|
|
text=sentence,
|
|
|
|
merge_sentences=merge_sentences,
|
|
|
|
get_tone_ids=get_tone_ids,
|
|
|
|
lang=args.lang)
|
|
|
|
phone_ids = frontend_dict['phone_ids']
|
|
|
|
flags = 0
|
|
|
|
for i in range(len(phone_ids)):
|
|
|
|
part_phone_ids = phone_ids[i].numpy()
|
|
|
|
if am_name == 'fastspeech2':
|
|
|
|
am_input_feed.update({'text': part_phone_ids})
|
|
|
|
if am_dataset in {"aishell3", "vctk", "mix", "canton"}:
|
|
|
|
am_input_feed.update({'spk_id': spk_id})
|
|
|
|
elif am_name == 'speedyspeech':
|
|
|
|
part_tone_ids = frontend_dict['tone_ids'][i].numpy()
|
|
|
|
am_input_feed.update({
|
|
|
|
'phones': part_phone_ids,
|
|
|
|
'tones': part_tone_ids
|
|
|
|
})
|
|
|
|
mel = am_sess.run(output_names=None, input_feed=am_input_feed)
|
|
|
|
mel = mel[0]
|
|
|
|
wav = voc_sess.run(
|
|
|
|
output_names=None, input_feed={'logmel': mel})
|
|
|
|
wav = wav[0]
|
|
|
|
if flags == 0:
|
|
|
|
wav_all = wav
|
|
|
|
flags = 1
|
|
|
|
else:
|
|
|
|
wav_all = np.concatenate([wav_all, wav])
|
|
|
|
wav = wav_all
|
|
|
|
N += len(wav)
|
|
|
|
T += t.elapse
|
|
|
|
speed = len(wav) / t.elapse
|
|
|
|
rtf = fs / speed
|
|
|
|
sf.write(str(output_dir / (utt_id + ".wav")), wav, samplerate=fs)
|
|
|
|
print(
|
|
|
|
f"{utt_id}, mel: {mel.shape}, wave: {len(wav)}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
|
|
|
)
|
|
|
|
print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }")
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(description="Infernce with onnxruntime.")
|
|
|
|
# acoustic model
|
|
|
|
parser.add_argument(
|
|
|
|
'--am',
|
|
|
|
type=str,
|
|
|
|
default='fastspeech2_csmsc',
|
|
|
|
choices=[
|
|
|
|
'fastspeech2_csmsc',
|
|
|
|
'fastspeech2_aishell3',
|
|
|
|
'fastspeech2_ljspeech',
|
|
|
|
'fastspeech2_vctk',
|
|
|
|
'speedyspeech_csmsc',
|
|
|
|
'fastspeech2_mix',
|
|
|
|
'fastspeech2_male-zh',
|
|
|
|
'fastspeech2_male-en',
|
|
|
|
'fastspeech2_male-mix',
|
|
|
|
'fastspeech2_canton',
|
|
|
|
],
|
|
|
|
help='Choose acoustic model type of tts task.')
|
|
|
|
parser.add_argument(
|
|
|
|
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--tones_dict", type=str, default=None, help="tone vocabulary file.")
|
|
|
|
parser.add_argument(
|
|
|
|
'--spk_id',
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help='spk id for multi speaker acoustic model')
|
|
|
|
|
|
|
|
# voc
|
|
|
|
parser.add_argument(
|
|
|
|
'--voc',
|
|
|
|
type=str,
|
|
|
|
default='hifigan_csmsc',
|
|
|
|
choices=[
|
|
|
|
'pwgan_csmsc',
|
|
|
|
'pwgan_aishell3',
|
|
|
|
'pwgan_ljspeech',
|
|
|
|
'pwgan_vctk',
|
|
|
|
'hifigan_csmsc',
|
|
|
|
'hifigan_aishell3',
|
|
|
|
'hifigan_ljspeech',
|
|
|
|
'hifigan_vctk',
|
|
|
|
'mb_melgan_csmsc',
|
|
|
|
'pwgan_male',
|
|
|
|
'hifigan_male',
|
|
|
|
],
|
|
|
|
help='Choose vocoder type of tts task.')
|
|
|
|
# other
|
|
|
|
parser.add_argument(
|
|
|
|
"--inference_dir", type=str, help="dir to save inference models")
|
|
|
|
parser.add_argument(
|
|
|
|
"--text",
|
|
|
|
type=str,
|
|
|
|
help="text to synthesize, a 'utt_id sentence' pair per line")
|
|
|
|
parser.add_argument("--output_dir", type=str, help="output dir")
|
|
|
|
parser.add_argument(
|
|
|
|
'--lang',
|
|
|
|
type=str,
|
|
|
|
default='zh',
|
|
|
|
help='Choose model language. zh or en')
|
|
|
|
|
|
|
|
# inference
|
|
|
|
parser.add_argument(
|
|
|
|
"--use_trt",
|
|
|
|
type=str2bool,
|
|
|
|
default=False,
|
|
|
|
help="Whether to use inference engin TensorRT.", )
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
"--device",
|
|
|
|
default="gpu",
|
|
|
|
choices=["gpu", "cpu"],
|
|
|
|
help="Device selected for inference.", )
|
|
|
|
parser.add_argument('--cpu_threads', type=int, default=1)
|
|
|
|
|
|
|
|
args, _ = parser.parse_known_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
|
|
|
|
paddle.set_device(args.device)
|
|
|
|
|
|
|
|
ort_predict(args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|