You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/starganv2_vc/losses.py

256 lines
8.2 KiB

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from munch import Munch
from starganv2vc_paddle.transforms import build_transforms
# 这些都写到 updater 里
def compute_d_loss(nets,
args,
x_real,
y_org,
y_trg,
z_trg=None,
x_ref=None,
use_r1_reg=True,
use_adv_cls=False,
use_con_reg=False):
args = Munch(args)
assert (z_trg is None) != (x_ref is None)
# with real audios
x_real.stop_gradient = False
out = nets.discriminator(x_real, y_org)
loss_real = adv_loss(out, 1)
# R1 regularizaition (https://arxiv.org/abs/1801.04406v4)
if use_r1_reg:
loss_reg = r1_reg(out, x_real)
else:
loss_reg = paddle.to_tensor([0.], dtype=paddle.float32)
# consistency regularization (bCR-GAN: https://arxiv.org/abs/2002.04724)
loss_con_reg = paddle.to_tensor([0.], dtype=paddle.float32)
if use_con_reg:
t = build_transforms()
out_aug = nets.discriminator(t(x_real).detach(), y_org)
loss_con_reg += F.smooth_l1_loss(out, out_aug)
# with fake audios
with paddle.no_grad():
if z_trg is not None:
s_trg = nets.mapping_network(z_trg, y_trg)
else: # x_ref is not None
s_trg = nets.style_encoder(x_ref, y_trg)
F0 = nets.f0_model.get_feature_GAN(x_real)
x_fake = nets.generator(x_real, s_trg, masks=None, F0=F0)
out = nets.discriminator(x_fake, y_trg)
loss_fake = adv_loss(out, 0)
if use_con_reg:
out_aug = nets.discriminator(t(x_fake).detach(), y_trg)
loss_con_reg += F.smooth_l1_loss(out, out_aug)
# adversarial classifier loss
if use_adv_cls:
out_de = nets.discriminator.classifier(x_fake)
loss_real_adv_cls = F.cross_entropy(out_de[y_org != y_trg],
y_org[y_org != y_trg])
if use_con_reg:
out_de_aug = nets.discriminator.classifier(t(x_fake).detach())
loss_con_reg += F.smooth_l1_loss(out_de, out_de_aug)
else:
loss_real_adv_cls = paddle.zeros([1]).mean()
loss = loss_real + loss_fake + args.lambda_reg * loss_reg + \
args.lambda_adv_cls * loss_real_adv_cls + \
args.lambda_con_reg * loss_con_reg
return loss, Munch(
real=loss_real.item(),
fake=loss_fake.item(),
reg=loss_reg.item(),
real_adv_cls=loss_real_adv_cls.item(),
con_reg=loss_con_reg.item())
def compute_g_loss(nets,
args,
x_real,
y_org,
y_trg,
z_trgs=None,
x_refs=None,
use_adv_cls=False):
args = Munch(args)
assert (z_trgs is None) != (x_refs is None)
if z_trgs is not None:
z_trg, z_trg2 = z_trgs
if x_refs is not None:
x_ref, x_ref2 = x_refs
# compute style vectors
if z_trgs is not None:
s_trg = nets.mapping_network(z_trg, y_trg)
else:
s_trg = nets.style_encoder(x_ref, y_trg)
# compute ASR/F0 features (real)
with paddle.no_grad():
F0_real, GAN_F0_real, cyc_F0_real = nets.f0_model(x_real)
ASR_real = nets.asr_model.get_feature(x_real)
# adversarial loss
x_fake = nets.generator(x_real, s_trg, masks=None, F0=GAN_F0_real)
out = nets.discriminator(x_fake, y_trg)
loss_adv = adv_loss(out, 1)
# compute ASR/F0 features (fake)
F0_fake, GAN_F0_fake, _ = nets.f0_model(x_fake)
ASR_fake = nets.asr_model.get_feature(x_fake)
# norm consistency loss
x_fake_norm = log_norm(x_fake)
x_real_norm = log_norm(x_real)
loss_norm = ((
paddle.nn.ReLU()(paddle.abs(x_fake_norm - x_real_norm) - args.norm_bias)
)**2).mean()
# F0 loss
loss_f0 = f0_loss(F0_fake, F0_real)
# style F0 loss (style initialization)
if x_refs is not None and args.lambda_f0_sty > 0 and not use_adv_cls:
F0_sty, _, _ = nets.f0_model(x_ref)
loss_f0_sty = F.l1_loss(
compute_mean_f0(F0_fake), compute_mean_f0(F0_sty))
else:
loss_f0_sty = paddle.zeros([1]).mean()
# ASR loss
loss_asr = F.smooth_l1_loss(ASR_fake, ASR_real)
# style reconstruction loss
s_pred = nets.style_encoder(x_fake, y_trg)
loss_sty = paddle.mean(paddle.abs(s_pred - s_trg))
# diversity sensitive loss
if z_trgs is not None:
s_trg2 = nets.mapping_network(z_trg2, y_trg)
else:
s_trg2 = nets.style_encoder(x_ref2, y_trg)
x_fake2 = nets.generator(x_real, s_trg2, masks=None, F0=GAN_F0_real)
x_fake2 = x_fake2.detach()
_, GAN_F0_fake2, _ = nets.f0_model(x_fake2)
loss_ds = paddle.mean(paddle.abs(x_fake - x_fake2))
loss_ds += F.smooth_l1_loss(GAN_F0_fake, GAN_F0_fake2.detach())
# cycle-consistency loss
s_org = nets.style_encoder(x_real, y_org)
x_rec = nets.generator(x_fake, s_org, masks=None, F0=GAN_F0_fake)
loss_cyc = paddle.mean(paddle.abs(x_rec - x_real))
# F0 loss in cycle-consistency loss
if args.lambda_f0 > 0:
_, _, cyc_F0_rec = nets.f0_model(x_rec)
loss_cyc += F.smooth_l1_loss(cyc_F0_rec, cyc_F0_real)
if args.lambda_asr > 0:
ASR_recon = nets.asr_model.get_feature(x_rec)
loss_cyc += F.smooth_l1_loss(ASR_recon, ASR_real)
# adversarial classifier loss
if use_adv_cls:
out_de = nets.discriminator.classifier(x_fake)
loss_adv_cls = F.cross_entropy(out_de[y_org != y_trg],
y_trg[y_org != y_trg])
else:
loss_adv_cls = paddle.zeros([1]).mean()
loss = args.lambda_adv * loss_adv + args.lambda_sty * loss_sty \
- args.lambda_ds * loss_ds + args.lambda_cyc * loss_cyc\
+ args.lambda_norm * loss_norm \
+ args.lambda_asr * loss_asr \
+ args.lambda_f0 * loss_f0 \
+ args.lambda_f0_sty * loss_f0_sty \
+ args.lambda_adv_cls * loss_adv_cls
return loss, Munch(
adv=loss_adv.item(),
sty=loss_sty.item(),
ds=loss_ds.item(),
cyc=loss_cyc.item(),
norm=loss_norm.item(),
asr=loss_asr.item(),
f0=loss_f0.item(),
adv_cls=loss_adv_cls.item())
# for norm consistency loss
def log_norm(x, mean=-4, std=4, axis=2):
"""
normalized log mel -> mel -> norm -> log(norm)
"""
x = paddle.log(paddle.exp(x * std + mean).norm(axis=axis))
return x
# for adversarial loss
def adv_loss(logits, target):
assert target in [1, 0]
if len(logits.shape) > 1:
logits = logits.reshape([-1])
targets = paddle.full_like(logits, fill_value=target)
logits = logits.clip(min=-10, max=10) # prevent nan
loss = F.binary_cross_entropy_with_logits(logits, targets)
return loss
# for R1 regularization loss
def r1_reg(d_out, x_in):
# zero-centered gradient penalty for real images
batch_size = x_in.shape[0]
grad_dout = paddle.grad(
outputs=d_out.sum(),
inputs=x_in,
create_graph=True,
retain_graph=True,
only_inputs=True)[0]
grad_dout2 = grad_dout.pow(2)
assert (grad_dout2.shape == x_in.shape)
reg = 0.5 * grad_dout2.reshape((batch_size, -1)).sum(1).mean(0)
return reg
# for F0 consistency loss
def compute_mean_f0(f0):
f0_mean = f0.mean(-1)
f0_mean = f0_mean.expand((f0.shape[-1], f0_mean.shape[0])).transpose(
(1, 0)) # (B, M)
return f0_mean
def f0_loss(x_f0, y_f0):
"""
x.shape = (B, 1, M, L): predict
y.shape = (B, 1, M, L): target
"""
# compute the mean
x_mean = compute_mean_f0(x_f0)
y_mean = compute_mean_f0(y_f0)
loss = F.l1_loss(x_f0 / x_mean, y_f0 / y_mean)
return loss