You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
51 lines
1.9 KiB
51 lines
1.9 KiB
8 years ago
|
"""Contain the online bayesian normalization augmentation model."""
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
from data_utils.augmentor.base import AugmentorBase
|
||
|
|
||
|
|
||
|
class OnlineBayesianNormalizationAugmentor(AugmentorBase):
|
||
|
"""Augmentation model for adding online bayesian normalization.
|
||
|
|
||
|
:param rng: Random generator object.
|
||
|
:type rng: random.Random
|
||
|
:param target_db: Target RMS value in decibels.
|
||
|
:type target_db: float
|
||
|
:param prior_db: Prior RMS estimate in decibels.
|
||
|
:type prior_db: float
|
||
|
:param prior_samples: Prior strength in number of samples.
|
||
|
:type prior_samples: int
|
||
|
:param startup_delay: Default 0.0s. If provided, this function will
|
||
|
accrue statistics for the first startup_delay
|
||
|
seconds before applying online normalization.
|
||
|
:type starup_delay: float.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
rng,
|
||
|
target_db,
|
||
|
prior_db,
|
||
|
prior_samples,
|
||
|
startup_delay=0.0):
|
||
|
self._target_db = target_db
|
||
|
self._prior_db = prior_db
|
||
|
self._prior_samples = prior_samples
|
||
|
self._startup_delay = startup_delay
|
||
|
self._rng = rng
|
||
|
self._startup_delay=startup_delay
|
||
|
|
||
|
def transform_audio(self, audio_segment):
|
||
|
"""Normalizes the input audio using the online Bayesian approach.
|
||
|
|
||
|
Note that this is an in-place transformation.
|
||
|
|
||
|
:param audio_segment: Audio segment to add effects to.
|
||
|
:type audio_segment: AudioSegment|SpeechSegment
|
||
|
"""
|
||
|
audio_segment.normalize_online_bayesian(self._target_db,
|
||
|
self._prior_db,
|
||
|
self._prior_samples,
|
||
|
self._startup_delay)
|