You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/engine/asr/online/python/asr_engine.py

913 lines
35 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from typing import ByteString
from typing import Optional
3 years ago
import numpy as np
import paddle
3 years ago
from numpy import float32
from yacs.config import CfgNode
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.log import logger
from paddlespeech.resource import CommonTaskResource
from paddlespeech.audio.transform.transformation import Transformation
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.modules.ctc import CTCDecoder
from paddlespeech.s2t.utils.tensor_utils import add_sos_eos
from paddlespeech.s2t.utils.tensor_utils import pad_sequence
from paddlespeech.s2t.utils.utility import UpdateConfig
from paddlespeech.server.engine.asr.online.ctc_endpoint import OnlineCTCEndpoingOpt
from paddlespeech.server.engine.asr.online.ctc_endpoint import OnlineCTCEndpoint
from paddlespeech.server.engine.asr.online.ctc_search import CTCPrefixBeamSearch
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.paddle_predictor import init_predictor
from paddlespeech.utils.env import MODEL_HOME
__all__ = ['PaddleASRConnectionHanddler', 'ASRServerExecutor', 'ASREngine']
# ASR server connection process class
class PaddleASRConnectionHanddler:
def __init__(self, asr_engine):
"""Init a Paddle ASR Connection Handler instance
Args:
asr_engine (ASREngine): the global asr engine
"""
super().__init__()
logger.debug(
"create an paddle asr connection handler to process the websocket connection"
)
self.config = asr_engine.config # server config
self.model_config = asr_engine.executor.config
self.asr_engine = asr_engine
# model_type, sample_rate and text_feature is shared for deepspeech2 and conformer
self.model_type = self.asr_engine.executor.model_type
self.sample_rate = self.asr_engine.executor.sample_rate
# tokens to text
self.text_feature = self.asr_engine.executor.text_feature
# extract feat, new only fbank in conformer model
self.preprocess_conf = self.model_config.preprocess_config
self.preprocess_args = {"train": False}
self.preprocessing = Transformation(self.preprocess_conf)
# frame window and frame shift, in samples unit
self.win_length = self.preprocess_conf.process[0]['win_length']
self.n_shift = self.preprocess_conf.process[0]['n_shift']
assert self.preprocess_conf.process[0]['fs'] == self.sample_rate, (
self.sample_rate, self.preprocess_conf.process[0]['fs'])
self.frame_shift_in_ms = int(
self.n_shift / self.preprocess_conf.process[0]['fs'] * 1000)
self.continuous_decoding = self.config.get("continuous_decoding", False)
self.init_decoder()
self.reset()
def init_decoder(self):
if "deepspeech2" in self.model_type:
assert self.continuous_decoding is False, "ds2 model not support endpoint"
self.am_predictor = self.asr_engine.executor.am_predictor
self.decoder = CTCDecoder(
odim=self.model_config.output_dim, # <blank> is in vocab
enc_n_units=self.model_config.rnn_layer_size * 2,
blank_id=self.model_config.blank_id,
dropout_rate=0.0,
reduction=True, # sum
batch_average=True, # sum / batch_size
grad_norm_type=self.model_config.get('ctc_grad_norm_type',
None))
cfg = self.model_config.decode
decode_batch_size = 1 # for online
self.decoder.init_decoder(
decode_batch_size, self.text_feature.vocab_list,
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
cfg.num_proc_bsearch)
elif "conformer" in self.model_type or "transformer" in self.model_type:
# acoustic model
self.model = self.asr_engine.executor.model
self.continuous_decoding = self.config.continuous_decoding
logger.debug(f"continue decoding: {self.continuous_decoding}")
# ctc decoding config
self.ctc_decode_config = self.asr_engine.executor.config.decode
self.searcher = CTCPrefixBeamSearch(self.ctc_decode_config)
# ctc endpoint
self.endpoint_opt = OnlineCTCEndpoingOpt(
frame_shift_in_ms=self.frame_shift_in_ms, blank=0)
self.endpointer = OnlineCTCEndpoint(self.endpoint_opt)
else:
raise ValueError(f"Not supported: {self.model_type}")
def model_reset(self):
# cache for audio and feat
self.remained_wav = None
self.cached_feat = None
if "deepspeech2" in self.model_type:
return
## conformer
# cache for conformer online
self.att_cache = paddle.zeros([0,0,0,0])
self.cnn_cache = paddle.zeros([0,0,0,0])
self.encoder_out = None
# conformer decoding state
self.offset = 0 # global offset in decoding frame unit
## just for record info
self.chunk_num = 0 # global decoding chunk num, not used
def output_reset(self):
## outputs
# partial/ending decoding results
self.result_transcripts = ['']
# token timestamp result
self.word_time_stamp = []
## just for record
self.hyps = []
# one best timestamp viterbi prob is large.
self.time_stamp = []
def reset_continuous_decoding(self):
"""
when in continous decoding, reset for next utterance.
"""
self.global_frame_offset = self.num_frames
self.model_reset()
self.searcher.reset()
self.endpointer.reset()
# reset hys will trancate history transcripts.
# self.output_reset()
def reset(self):
if "deepspeech2" in self.model_type:
# for deepspeech2
# init state
self.chunk_state_h_box = np.zeros(
(self.model_config.num_rnn_layers, 1,
self.model_config.rnn_layer_size),
dtype=float32)
self.chunk_state_c_box = np.zeros(
(self.model_config.num_rnn_layers, 1,
self.model_config.rnn_layer_size),
dtype=float32)
self.decoder.reset_decoder(batch_size=1)
if "conformer" in self.model_type or "transformer" in self.model_type:
self.searcher.reset()
self.endpointer.reset()
self.device = None
## common
# global sample and frame step
self.num_samples = 0
self.global_frame_offset = 0
# frame step of cur utterance
self.num_frames = 0
3 years ago
## endpoint
self.endpoint_state = False # True for detect endpoint
## conformer
self.model_reset()
## outputs
self.output_reset()
def extract_feat(self, samples: ByteString):
logger.info("Online ASR extract the feat")
samples = np.frombuffer(samples, dtype=np.int16)
assert samples.ndim == 1
self.num_samples += samples.shape[0]
logger.debug(
f"This package receive {samples.shape[0]} pcm data. Global samples:{self.num_samples}"
)
# self.reamined_wav stores all the samples,
# include the original remained_wav and this package samples
if self.remained_wav is None:
self.remained_wav = samples
else:
assert self.remained_wav.ndim == 1 # (T,)
self.remained_wav = np.concatenate([self.remained_wav, samples])
logger.debug(
f"The concatenation of remain and now audio samples length is: {self.remained_wav.shape}"
)
if len(self.remained_wav) < self.win_length:
# samples not enough for feature window
return 0
# fbank
x_chunk = self.preprocessing(self.remained_wav, **self.preprocess_args)
x_chunk = paddle.to_tensor(x_chunk, dtype="float32").unsqueeze(axis=0)
# feature cache
if self.cached_feat is None:
self.cached_feat = x_chunk
else:
assert (len(x_chunk.shape) == 3) # (B,T,D)
assert (len(self.cached_feat.shape) == 3) # (B,T,D)
self.cached_feat = paddle.concat(
[self.cached_feat, x_chunk], axis=1)
# set the feat device
if self.device is None:
self.device = self.cached_feat.place
# cur frame step
num_frames = x_chunk.shape[1]
# global frame step
self.num_frames += num_frames
# update remained wav
self.remained_wav = self.remained_wav[self.n_shift * num_frames:]
logger.debug(
f"process the audio feature success, the cached feat shape: {self.cached_feat.shape}"
)
logger.debug(
f"After extract feat, the cached remain the audio samples: {self.remained_wav.shape}"
)
logger.debug(f"global samples: {self.num_samples}")
logger.debug(f"global frames: {self.num_frames}")
def decode(self, is_finished=False):
"""advance decoding
Args:
is_finished (bool, optional): Is last frame or not. Defaults to False.
Returns:
None:
"""
if "deepspeech2" in self.model_type:
decoding_chunk_size = 1 # decoding chunk size = 1. int decoding frame unit
context = 7 # context=7, in audio frame unit
subsampling = 4 # subsampling=4, in audio frame unit
3 years ago
cached_feature_num = context - subsampling
# decoding window for model, in audio frame unit
decoding_window = (decoding_chunk_size - 1) * subsampling + context
# decoding stride for model, in audio frame unit
stride = subsampling * decoding_chunk_size
if self.cached_feat is None:
logger.debug("no audio feat, please input more pcm data")
return
num_frames = self.cached_feat.shape[1]
logger.debug(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
)
# the cached feat must be larger decoding_window
if num_frames < decoding_window and not is_finished:
logger.debug(
f"frame feat num is less than {decoding_window}, please input more pcm data"
)
return None, None
# if is_finished=True, we need at least context frames
if num_frames < context:
logger.debug(
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
)
return None, None
logger.info("start to do model forward")
# num_frames - context + 1 ensure that current frame can get context window
if is_finished:
# if get the finished chunk, we need process the last context
left_frames = context
else:
# we only process decoding_window frames for one chunk
left_frames = decoding_window
end = None
for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames)
# extract the audio
x_chunk = self.cached_feat[:, cur:end, :].numpy()
x_chunk_lens = np.array([x_chunk.shape[1]])
trans_best = self.decode_one_chunk(x_chunk, x_chunk_lens)
self.result_transcripts = [trans_best]
# update feat cache
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
# return trans_best[0]
elif "conformer" in self.model_type or "transformer" in self.model_type:
try:
logger.info(
f"we will use the transformer like model : {self.model_type}"
)
self.advance_decoding(is_finished)
self.update_result()
except Exception as e:
logger.exception(e)
else:
raise Exception("invalid model name")
@paddle.no_grad()
def decode_one_chunk(self, x_chunk, x_chunk_lens):
"""forward one chunk frames
Args:
x_chunk (np.ndarray): (B,T,D), audio frames.
x_chunk_lens ([type]): (B,), audio frame lens
Returns:
logprob: poster probability.
"""
logger.debug("start to decoce one chunk for deepspeech2")
input_names = self.am_predictor.get_input_names()
audio_handle = self.am_predictor.get_input_handle(input_names[0])
audio_len_handle = self.am_predictor.get_input_handle(input_names[1])
h_box_handle = self.am_predictor.get_input_handle(input_names[2])
c_box_handle = self.am_predictor.get_input_handle(input_names[3])
audio_handle.reshape(x_chunk.shape)
audio_handle.copy_from_cpu(x_chunk)
audio_len_handle.reshape(x_chunk_lens.shape)
audio_len_handle.copy_from_cpu(x_chunk_lens)
h_box_handle.reshape(self.chunk_state_h_box.shape)
h_box_handle.copy_from_cpu(self.chunk_state_h_box)
c_box_handle.reshape(self.chunk_state_c_box.shape)
c_box_handle.copy_from_cpu(self.chunk_state_c_box)
output_names = self.am_predictor.get_output_names()
output_handle = self.am_predictor.get_output_handle(output_names[0])
output_lens_handle = self.am_predictor.get_output_handle(
output_names[1])
output_state_h_handle = self.am_predictor.get_output_handle(
output_names[2])
output_state_c_handle = self.am_predictor.get_output_handle(
output_names[3])
self.am_predictor.run()
output_chunk_probs = output_handle.copy_to_cpu()
output_chunk_lens = output_lens_handle.copy_to_cpu()
self.chunk_state_h_box = output_state_h_handle.copy_to_cpu()
self.chunk_state_c_box = output_state_c_handle.copy_to_cpu()
self.decoder.next(output_chunk_probs, output_chunk_lens)
trans_best, trans_beam = self.decoder.decode()
logger.debug(f"decode one best result for deepspeech2: {trans_best[0]}")
return trans_best[0]
@paddle.no_grad()
def advance_decoding(self, is_finished=False):
if "deepspeech" in self.model_type:
return
# reset endpiont state
self.endpoint_state = False
logger.debug(
3 years ago
"Conformer/Transformer: start to decode with advanced_decoding method"
)
cfg = self.ctc_decode_config
# cur chunk size, in decoding frame unit, e.g. 16
decoding_chunk_size = cfg.decoding_chunk_size
# using num of history chunks, e.g -1
num_decoding_left_chunks = cfg.num_decoding_left_chunks
assert decoding_chunk_size > 0
# e.g. 4
subsampling = self.model.encoder.embed.subsampling_rate
# e.g. 7
context = self.model.encoder.embed.right_context + 1
# processed chunk feature cached for next chunk, e.g. 3
cached_feature_num = context - subsampling
# decoding window, in audio frame unit
decoding_window = (decoding_chunk_size - 1) * subsampling + context
# decoding stride, in audio frame unit
stride = subsampling * decoding_chunk_size
if self.cached_feat is None:
logger.debug("no audio feat, please input more pcm data")
return
# (B=1,T,D)
num_frames = self.cached_feat.shape[1]
logger.debug(
f"Required decoding window {decoding_window} frames, and the connection has {num_frames} frames"
)
# the cached feat must be larger decoding_window
if num_frames < decoding_window and not is_finished:
logger.debug(
f"frame feat num is less than {decoding_window}, please input more pcm data"
)
return None, None
# if is_finished=True, we need at least context frames
if num_frames < context:
logger.debug(
"flast {num_frames} is less than context {context} frames, and we cannot do model forward"
)
return None, None
logger.info("start to do model forward")
# num_frames - context + 1 ensure that current frame can get context window
if is_finished:
# if get the finished chunk, we need process the last context
left_frames = context
else:
# we only process decoding_window frames for one chunk
left_frames = decoding_window
# hist of chunks, in deocding frame unit
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
# record the end for removing the processed feat
outputs = []
end = None
for cur in range(0, num_frames - left_frames + 1, stride):
end = min(cur + decoding_window, num_frames)
# global chunk_num
self.chunk_num += 1
# cur chunk
chunk_xs = self.cached_feat[:, cur:end, :]
# forward chunk
(y, self.att_cache, self.cnn_cache) = self.model.encoder.forward_chunk(
chunk_xs, self.offset, required_cache_size,
self.att_cache, self.cnn_cache)
outputs.append(y)
# update the global offset, in decoding frame unit
self.offset += y.shape[1]
ys = paddle.cat(outputs, 1)
if self.encoder_out is None:
self.encoder_out = ys
else:
self.encoder_out = paddle.concat([self.encoder_out, ys], axis=1)
logger.debug(
f"This connection handler encoder out shape: {self.encoder_out.shape}"
)
# get the ctc probs
ctc_probs = self.model.ctc.log_softmax(ys) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0)
## decoding
# advance decoding
self.searcher.search(ctc_probs, self.cached_feat.place)
# get one best hyps
self.hyps = self.searcher.get_one_best_hyps()
# endpoint
if not is_finished:
def contain_nonsilence():
return len(self.hyps) > 0 and len(self.hyps[0]) > 0
decoding_something = contain_nonsilence()
if self.endpointer.endpoint_detected(ctc_probs.numpy(),
decoding_something):
self.endpoint_state = True
logger.debug(
f"Endpoint is detected at {self.num_frames} frame.")
# advance cache of feat
assert self.cached_feat.shape[0] == 1 #(B=1,T,D)
assert end >= cached_feature_num
self.cached_feat = self.cached_feat[:, end - cached_feature_num:, :]
assert len(
self.cached_feat.shape
) == 3, f"current cache feat shape is: {self.cached_feat.shape}"
def update_result(self):
"""Conformer/Transformer hyps to result.
"""
logger.debug("update the final result")
hyps = self.hyps
# output results and tokenids
self.result_transcripts = [
self.text_feature.defeaturize(hyp) for hyp in hyps
]
self.result_tokenids = [hyp for hyp in hyps]
def get_result(self):
"""return partial/ending asr result.
Returns:
str: one best result of partial/ending.
"""
if len(self.result_transcripts) > 0:
return self.result_transcripts[0]
else:
return ''
def get_word_time_stamp(self):
"""return token timestamp result.
Returns:
list: List of ('w':token, 'bg':time, 'ed':time)
"""
return self.word_time_stamp
@paddle.no_grad()
def rescoring(self):
"""Second-Pass Decoding,
only for conformer and transformer model.
"""
if "deepspeech2" in self.model_type:
logger.debug("deepspeech2 not support rescoring decoding.")
return
3 years ago
if "attention_rescoring" != self.ctc_decode_config.decoding_method:
logger.debug(
3 years ago
f"decoding method not match: {self.ctc_decode_config.decoding_method}, need attention_rescoring"
)
return
logger.debug("rescoring the final result")
# last decoding for last audio
self.searcher.finalize_search()
# update beam search results
self.update_result()
beam_size = self.ctc_decode_config.beam_size
hyps = self.searcher.get_hyps()
if hyps is None or len(hyps) == 0:
logger.info("No Hyps!")
return
# rescore by decoder post probability
# assert len(hyps) == beam_size
# list of Tensor
hyp_list = []
for hyp in hyps:
hyp_content = hyp[0]
# Prevent the hyp is empty
if len(hyp_content) == 0:
hyp_content = (self.model.ctc.blank_id, )
hyp_content = paddle.to_tensor(
hyp_content, place=self.device, dtype=paddle.long)
hyp_list.append(hyp_content)
3 years ago
hyps_pad = pad_sequence(
hyp_list, batch_first=True, padding_value=self.model.ignore_id)
hyps_lens = paddle.to_tensor(
[len(hyp[0]) for hyp in hyps], place=self.device,
dtype=paddle.long) # (beam_size,)
hyps_pad, _ = add_sos_eos(hyps_pad, self.model.sos, self.model.eos,
self.model.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
encoder_out = self.encoder_out.repeat(beam_size, 1, 1)
encoder_mask = paddle.ones(
(beam_size, 1, encoder_out.shape[1]), dtype=paddle.bool)
decoder_out, _ = self.model.decoder(
encoder_out, encoder_mask, hyps_pad,
hyps_lens) # (beam_size, max_hyps_len, vocab_size)
# ctc score in ln domain
decoder_out = paddle.nn.functional.log_softmax(decoder_out, axis=-1)
decoder_out = decoder_out.numpy()
# Only use decoder score for rescoring
best_score = -float('inf')
best_index = 0
# hyps is List[(Text=List[int], Score=float)], len(hyps)=beam_size
for i, hyp in enumerate(hyps):
score = 0.0
for j, w in enumerate(hyp[0]):
score += decoder_out[i][j][w]
# last decoder output token is `eos`, for laste decoder input token.
score += decoder_out[i][len(hyp[0])][self.model.eos]
# add ctc score (which in ln domain)
score += hyp[1] * self.ctc_decode_config.ctc_weight
if score > best_score:
best_score = score
best_index = i
# update the one best result
# hyps stored the beam results and each fields is:
logger.info(f"best hyp index: {best_index}")
# logger.info(f'best result: {hyps[best_index]}')
# the field of the hyps is:
## asr results
# hyps[0][0]: the sentence word-id in the vocab with a tuple
# hyps[0][1]: the sentence decoding probability with all paths
## timestamp
# hyps[0][2]: viterbi_blank ending probability
# hyps[0][3]: viterbi_non_blank dending probability
# hyps[0][4]: current_token_prob,
# hyps[0][5]: times_viterbi_blank ending timestamp,
# hyps[0][6]: times_titerbi_non_blank encding timestamp.
self.hyps = [hyps[best_index][0]]
logger.info(f"best hyp ids: {self.hyps}")
# update the hyps time stamp
self.time_stamp = hyps[best_index][5] if hyps[best_index][2] > hyps[
best_index][3] else hyps[best_index][6]
logger.info(f"time stamp: {self.time_stamp}")
# update one best result
self.update_result()
# update each word start and end time stamp
# decoding frame to audio frame
decode_frame_shift = self.model.encoder.embed.subsampling_rate
decode_frame_shift_in_sec = decode_frame_shift * (self.n_shift /
self.sample_rate)
logger.info(f"decode frame shift in sec: {decode_frame_shift_in_sec}")
global_offset_in_sec = self.global_frame_offset * self.frame_shift_in_ms / 1000.0
logger.info(f"global offset: {global_offset_in_sec} sec.")
word_time_stamp = []
for idx, _ in enumerate(self.time_stamp):
start = (self.time_stamp[idx - 1] + self.time_stamp[idx]
) / 2.0 if idx > 0 else 0
start = start * decode_frame_shift_in_sec
end = (self.time_stamp[idx] + self.time_stamp[idx + 1]
) / 2.0 if idx < len(self.time_stamp) - 1 else self.offset
end = end * decode_frame_shift_in_sec
word_time_stamp.append({
"w": self.result_transcripts[0][idx],
"bg": global_offset_in_sec + start,
"ed": global_offset_in_sec + end
})
3 years ago
self.word_time_stamp = word_time_stamp
logger.info(f"word time stamp: {self.word_time_stamp}")
class ASRServerExecutor(ASRExecutor):
def __init__(self):
super().__init__()
self.task_resource = CommonTaskResource(
task='asr', model_format='dynamic', inference_mode='online')
def update_config(self) -> None:
if "deepspeech2" in self.model_type:
with UpdateConfig(self.config):
# download lm
self.config.decode.lang_model_path = os.path.join(
MODEL_HOME, 'language_model',
self.config.decode.lang_model_path)
lm_url = self.task_resource.res_dict['lm_url']
lm_md5 = self.task_resource.res_dict['lm_md5']
logger.debug(f"Start to load language model {lm_url}")
self.download_lm(
lm_url,
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
elif "conformer" in self.model_type or "transformer" in self.model_type:
with UpdateConfig(self.config):
logger.debug("start to create the stream conformer asr engine")
# update the decoding method
if self.decode_method:
self.config.decode.decoding_method = self.decode_method
# update num_decoding_left_chunks
if self.num_decoding_left_chunks:
assert self.num_decoding_left_chunks == -1 or self.num_decoding_left_chunks >= 0, "num_decoding_left_chunks should be -1 or >=0"
self.config.decode.num_decoding_left_chunks = self.num_decoding_left_chunks
# we only support ctc_prefix_beam_search and attention_rescoring dedoding method
# Generally we set the decoding_method to attention_rescoring
if self.config.decode.decoding_method not in [
"ctc_prefix_beam_search", "attention_rescoring"
]:
logger.debug(
"we set the decoding_method to attention_rescoring")
self.config.decode.decoding_method = "attention_rescoring"
assert self.config.decode.decoding_method in [
"ctc_prefix_beam_search", "attention_rescoring"
], f"we only support ctc_prefix_beam_search and attention_rescoring dedoding method, current decoding method is {self.config.decode.decoding_method}"
else:
raise Exception(f"not support: {self.model_type}")
def init_model(self) -> None:
if "deepspeech2" in self.model_type:
# AM predictor
logger.debug("ASR engine start to init the am predictor")
self.am_predictor = init_predictor(
model_file=self.am_model,
params_file=self.am_params,
predictor_conf=self.am_predictor_conf)
elif "conformer" in self.model_type or "transformer" in self.model_type:
# load model
# model_type: {model_name}_{dataset}
model_name = self.model_type[:self.model_type.rindex('_')]
logger.debug(f"model name: {model_name}")
model_class = self.task_resource.get_model_class(model_name)
model = model_class.from_config(self.config)
self.model = model
self.model.set_state_dict(paddle.load(self.am_model))
self.model.eval()
else:
raise Exception(f"not support: {self.model_type}")
def _init_from_path(self,
model_type: str=None,
am_model: Optional[os.PathLike]=None,
am_params: Optional[os.PathLike]=None,
lang: str='zh',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
decode_method: str='attention_rescoring',
num_decoding_left_chunks: int=-1,
am_predictor_conf: dict=None):
"""
Init model and other resources from a specific path.
"""
if not model_type or not lang or not sample_rate:
logger.error(
"The model type or lang or sample rate is None, please input an valid server parameter yaml"
)
return False
self.model_type = model_type
self.sample_rate = sample_rate
self.decode_method = decode_method
self.num_decoding_left_chunks = num_decoding_left_chunks
# conf for paddleinference predictor or onnx
self.am_predictor_conf = am_predictor_conf
logger.debug(f"model_type: {self.model_type}")
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
tag = model_type + '-' + lang + '-' + sample_rate_str
self.task_resource.set_task_model(model_tag=tag)
if cfg_path is None or am_model is None or am_params is None:
self.res_path = self.task_resource.res_dir
self.cfg_path = os.path.join(
self.res_path, self.task_resource.res_dict['cfg_path'])
self.am_model = os.path.join(self.res_path,
self.task_resource.res_dict['model'])
self.am_params = os.path.join(self.res_path,
self.task_resource.res_dict['params'])
else:
self.cfg_path = os.path.abspath(cfg_path)
self.am_model = os.path.abspath(am_model)
self.am_params = os.path.abspath(am_params)
self.res_path = os.path.dirname(
3 years ago
os.path.dirname(os.path.abspath(self.cfg_path)))
logger.debug("Load the pretrained model:")
logger.debug(f" tag = {tag}")
logger.debug(f" res_path: {self.res_path}")
logger.debug(f" cfg path: {self.cfg_path}")
logger.debug(f" am_model path: {self.am_model}")
logger.debug(f" am_params path: {self.am_params}")
#Init body.
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
if self.config.spm_model_prefix:
self.config.spm_model_prefix = os.path.join(
self.res_path, self.config.spm_model_prefix)
logger.debug(f"spm model path: {self.config.spm_model_prefix}")
self.vocab = self.config.vocab_filepath
self.text_feature = TextFeaturizer(
unit_type=self.config.unit_type,
vocab=self.config.vocab_filepath,
spm_model_prefix=self.config.spm_model_prefix)
self.update_config()
# AM predictor
self.init_model()
3 years ago
logger.debug(f"create the {model_type} model success")
return True
class ASREngine(BaseEngine):
"""ASR server resource
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self):
super(ASREngine, self).__init__()
def init_model(self) -> bool:
if not self.executor._init_from_path(
model_type=self.config.model_type,
am_model=self.config.am_model,
am_params=self.config.am_params,
lang=self.config.lang,
sample_rate=self.config.sample_rate,
cfg_path=self.config.cfg_path,
decode_method=self.config.decode_method,
num_decoding_left_chunks=self.config.num_decoding_left_chunks,
am_predictor_conf=self.config.am_predictor_conf):
return False
return True
def init(self, config: dict) -> bool:
"""init engine resource
Args:
config_file (str): config file
Returns:
bool: init failed or success
"""
self.config = config
self.executor = ASRServerExecutor()
try:
self.device = self.config.get("device", paddle.get_device())
paddle.set_device(self.device)
except BaseException as e:
logger.error(
f"Set device failed, please check if device '{self.device}' is already used and the parameter 'device' in the yaml file"
)
logger.error(
"If all GPU or XPU is used, you can set the server to 'cpu'")
sys.exit(-1)
logger.debug(f"paddlespeech_server set the device: {self.device}")
if not self.init_model():
logger.error(
"Init the ASR server occurs error, please check the server configuration yaml"
)
return False
logger.info("Initialize ASR server engine successfully on device: %s." %
(self.device))
return True
def new_handler(self):
"""New handler from model.
Returns:
PaddleASRConnectionHanddler: asr handler instance
"""
return PaddleASRConnectionHanddler(self)
def preprocess(self, *args, **kwargs):
raise NotImplementedError("Online not using this.")
def run(self, *args, **kwargs):
raise NotImplementedError("Online not using this.")
def postprocess(self):
raise NotImplementedError("Online not using this.")