|
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
from paddleaudio.utils.download import load_state_dict_from_url
|
|
|
|
|
from paddleaudio.utils.env import MODEL_HOME
|
|
|
|
|
|
|
|
|
|
__all__ = ['CNN14', 'CNN10', 'CNN6', 'cnn14', 'cnn10', 'cnn6']
|
|
|
|
|
|
|
|
|
|
pretrained_model_urls = {
|
|
|
|
|
'cnn14': 'https://bj.bcebos.com/paddleaudio/models/panns_cnn14.pdparams',
|
|
|
|
|
'cnn10': 'https://bj.bcebos.com/paddleaudio/models/panns_cnn10.pdparams',
|
|
|
|
|
'cnn6': 'https://bj.bcebos.com/paddleaudio/models/panns_cnn6.pdparams',
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBlock(nn.Layer):
|
|
|
|
|
def __init__(self, in_channels, out_channels):
|
|
|
|
|
super(ConvBlock, self).__init__()
|
|
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2D(
|
|
|
|
|
in_channels=in_channels,
|
|
|
|
|
out_channels=out_channels,
|
|
|
|
|
kernel_size=(3, 3),
|
|
|
|
|
stride=(1, 1),
|
|
|
|
|
padding=(1, 1),
|
|
|
|
|
bias_attr=False)
|
|
|
|
|
self.conv2 = nn.Conv2D(
|
|
|
|
|
in_channels=out_channels,
|
|
|
|
|
out_channels=out_channels,
|
|
|
|
|
kernel_size=(3, 3),
|
|
|
|
|
stride=(1, 1),
|
|
|
|
|
padding=(1, 1),
|
|
|
|
|
bias_attr=False)
|
|
|
|
|
self.bn1 = nn.BatchNorm2D(out_channels)
|
|
|
|
|
self.bn2 = nn.BatchNorm2D(out_channels)
|
|
|
|
|
|
|
|
|
|
def forward(self, x, pool_size=(2, 2), pool_type='avg'):
|
|
|
|
|
x = self.conv1(x)
|
|
|
|
|
x = self.bn1(x)
|
|
|
|
|
x = F.relu(x)
|
|
|
|
|
|
|
|
|
|
x = self.conv2(x)
|
|
|
|
|
x = self.bn2(x)
|
|
|
|
|
x = F.relu(x)
|
|
|
|
|
|
|
|
|
|
if pool_type == 'max':
|
|
|
|
|
x = F.max_pool2d(x, kernel_size=pool_size)
|
|
|
|
|
elif pool_type == 'avg':
|
|
|
|
|
x = F.avg_pool2d(x, kernel_size=pool_size)
|
|
|
|
|
elif pool_type == 'avg+max':
|
|
|
|
|
x = F.avg_pool2d(
|
|
|
|
|
x, kernel_size=pool_size) + F.max_pool2d(
|
|
|
|
|
x, kernel_size=pool_size)
|
|
|
|
|
else:
|
|
|
|
|
raise Exception(
|
|
|
|
|
f'Pooling type of {pool_type} is not supported. It must be one of "max", "avg" and "avg+max".'
|
|
|
|
|
)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBlock5x5(nn.Layer):
|
|
|
|
|
def __init__(self, in_channels, out_channels):
|
|
|
|
|
super(ConvBlock5x5, self).__init__()
|
|
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2D(
|
|
|
|
|
in_channels=in_channels,
|
|
|
|
|
out_channels=out_channels,
|
|
|
|
|
kernel_size=(5, 5),
|
|
|
|
|
stride=(1, 1),
|
|
|
|
|
padding=(2, 2),
|
|
|
|
|
bias_attr=False)
|
|
|
|
|
self.bn1 = nn.BatchNorm2D(out_channels)
|
|
|
|
|
|
|
|
|
|
def forward(self, x, pool_size=(2, 2), pool_type='avg'):
|
|
|
|
|
x = self.conv1(x)
|
|
|
|
|
x = self.bn1(x)
|
|
|
|
|
x = F.relu(x)
|
|
|
|
|
|
|
|
|
|
if pool_type == 'max':
|
|
|
|
|
x = F.max_pool2d(x, kernel_size=pool_size)
|
|
|
|
|
elif pool_type == 'avg':
|
|
|
|
|
x = F.avg_pool2d(x, kernel_size=pool_size)
|
|
|
|
|
elif pool_type == 'avg+max':
|
|
|
|
|
x = F.avg_pool2d(
|
|
|
|
|
x, kernel_size=pool_size) + F.max_pool2d(
|
|
|
|
|
x, kernel_size=pool_size)
|
|
|
|
|
else:
|
|
|
|
|
raise Exception(
|
|
|
|
|
f'Pooling type of {pool_type} is not supported. It must be one of "max", "avg" and "avg+max".'
|
|
|
|
|
)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CNN14(nn.Layer):
|
|
|
|
|
"""
|
|
|
|
|
The CNN14(14-layer CNNs) mainly consist of 6 convolutional blocks while each convolutional
|
|
|
|
|
block consists of 2 convolutional layers with a kernel size of 3 × 3.
|
|
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
|
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
|
|
|
|
|
https://arxiv.org/pdf/1912.10211.pdf
|
|
|
|
|
"""
|
|
|
|
|
emb_size = 2048
|
|
|
|
|
|
|
|
|
|
def __init__(self, extract_embedding: bool=True):
|
|
|
|
|
|
|
|
|
|
super(CNN14, self).__init__()
|
|
|
|
|
self.bn0 = nn.BatchNorm2D(64)
|
|
|
|
|
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
|
|
|
|
|
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
|
|
|
|
|
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
|
|
|
|
|
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
|
|
|
|
|
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
|
|
|
|
|
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
|
|
|
|
|
|
|
|
|
|
self.fc1 = nn.Linear(2048, self.emb_size)
|
|
|
|
|
self.fc_audioset = nn.Linear(self.emb_size, 527)
|
|
|
|
|
self.extract_embedding = extract_embedding
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
|
x = x.transpose([0, 3, 2, 1])
|
|
|
|
|
x = self.bn0(x)
|
|
|
|
|
x = x.transpose([0, 3, 2, 1])
|
|
|
|
|
|
|
|
|
|
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block5(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block6(x, pool_size=(1, 1), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = x.mean(axis=3)
|
|
|
|
|
x = x.max(axis=2) + x.mean(axis=2)
|
|
|
|
|
|
|
|
|
|
x = F.dropout(x, p=0.5, training=self.training)
|
|
|
|
|
x = F.relu(self.fc1(x))
|
|
|
|
|
|
|
|
|
|
if self.extract_embedding:
|
|
|
|
|
output = F.dropout(x, p=0.5, training=self.training)
|
|
|
|
|
else:
|
|
|
|
|
output = F.sigmoid(self.fc_audioset(x))
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CNN10(nn.Layer):
|
|
|
|
|
"""
|
|
|
|
|
The CNN10(14-layer CNNs) mainly consist of 4 convolutional blocks while each convolutional
|
|
|
|
|
block consists of 2 convolutional layers with a kernel size of 3 × 3.
|
|
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
|
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
|
|
|
|
|
https://arxiv.org/pdf/1912.10211.pdf
|
|
|
|
|
"""
|
|
|
|
|
emb_size = 512
|
|
|
|
|
|
|
|
|
|
def __init__(self, extract_embedding: bool=True):
|
|
|
|
|
|
|
|
|
|
super(CNN10, self).__init__()
|
|
|
|
|
self.bn0 = nn.BatchNorm2D(64)
|
|
|
|
|
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
|
|
|
|
|
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
|
|
|
|
|
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
|
|
|
|
|
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
|
|
|
|
|
|
|
|
|
|
self.fc1 = nn.Linear(512, self.emb_size)
|
|
|
|
|
self.fc_audioset = nn.Linear(self.emb_size, 527)
|
|
|
|
|
self.extract_embedding = extract_embedding
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
|
x = x.transpose([0, 3, 2, 1])
|
|
|
|
|
x = self.bn0(x)
|
|
|
|
|
x = x.transpose([0, 3, 2, 1])
|
|
|
|
|
|
|
|
|
|
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = x.mean(axis=3)
|
|
|
|
|
x = x.max(axis=2) + x.mean(axis=2)
|
|
|
|
|
|
|
|
|
|
x = F.dropout(x, p=0.5, training=self.training)
|
|
|
|
|
x = F.relu(self.fc1(x))
|
|
|
|
|
|
|
|
|
|
if self.extract_embedding:
|
|
|
|
|
output = F.dropout(x, p=0.5, training=self.training)
|
|
|
|
|
else:
|
|
|
|
|
output = F.sigmoid(self.fc_audioset(x))
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CNN6(nn.Layer):
|
|
|
|
|
"""
|
|
|
|
|
The CNN14(14-layer CNNs) mainly consist of 4 convolutional blocks while each convolutional
|
|
|
|
|
block consists of 1 convolutional layers with a kernel size of 5 × 5.
|
|
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
|
PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
|
|
|
|
|
https://arxiv.org/pdf/1912.10211.pdf
|
|
|
|
|
"""
|
|
|
|
|
emb_size = 512
|
|
|
|
|
|
|
|
|
|
def __init__(self, extract_embedding: bool=True):
|
|
|
|
|
|
|
|
|
|
super(CNN6, self).__init__()
|
|
|
|
|
self.bn0 = nn.BatchNorm2D(64)
|
|
|
|
|
self.conv_block1 = ConvBlock5x5(in_channels=1, out_channels=64)
|
|
|
|
|
self.conv_block2 = ConvBlock5x5(in_channels=64, out_channels=128)
|
|
|
|
|
self.conv_block3 = ConvBlock5x5(in_channels=128, out_channels=256)
|
|
|
|
|
self.conv_block4 = ConvBlock5x5(in_channels=256, out_channels=512)
|
|
|
|
|
|
|
|
|
|
self.fc1 = nn.Linear(512, self.emb_size)
|
|
|
|
|
self.fc_audioset = nn.Linear(self.emb_size, 527)
|
|
|
|
|
self.extract_embedding = extract_embedding
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x.stop_gradient = False
|
|
|
|
|
x = x.transpose([0, 3, 2, 1])
|
|
|
|
|
x = self.bn0(x)
|
|
|
|
|
x = x.transpose([0, 3, 2, 1])
|
|
|
|
|
|
|
|
|
|
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
|
|
|
|
|
x = F.dropout(x, p=0.2, training=self.training)
|
|
|
|
|
|
|
|
|
|
x = x.mean(axis=3)
|
|
|
|
|
x = x.max(axis=2) + x.mean(axis=2)
|
|
|
|
|
|
|
|
|
|
x = F.dropout(x, p=0.5, training=self.training)
|
|
|
|
|
x = F.relu(self.fc1(x))
|
|
|
|
|
|
|
|
|
|
if self.extract_embedding:
|
|
|
|
|
output = F.dropout(x, p=0.5, training=self.training)
|
|
|
|
|
else:
|
|
|
|
|
output = F.sigmoid(self.fc_audioset(x))
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cnn14(pretrained: bool=False, extract_embedding: bool=True) -> CNN14:
|
|
|
|
|
model = CNN14(extract_embedding=extract_embedding)
|
|
|
|
|
if pretrained:
|
|
|
|
|
state_dict = load_state_dict_from_url(
|
|
|
|
|
url=pretrained_model_urls['cnn14'],
|
|
|
|
|
path=os.path.join(MODEL_HOME, 'panns'))
|
|
|
|
|
model.set_state_dict(state_dict)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cnn10(pretrained: bool=False, extract_embedding: bool=True) -> CNN10:
|
|
|
|
|
model = CNN10(extract_embedding=extract_embedding)
|
|
|
|
|
if pretrained:
|
|
|
|
|
state_dict = load_state_dict_from_url(
|
|
|
|
|
url=pretrained_model_urls['cnn10'],
|
|
|
|
|
path=os.path.join(MODEL_HOME, 'panns'))
|
|
|
|
|
model.set_state_dict(state_dict)
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cnn6(pretrained: bool=False, extract_embedding: bool=True) -> CNN6:
|
|
|
|
|
model = CNN6(extract_embedding=extract_embedding)
|
|
|
|
|
if pretrained:
|
|
|
|
|
state_dict = load_state_dict_from_url(
|
|
|
|
|
url=pretrained_model_urls['cnn6'],
|
|
|
|
|
path=os.path.join(MODEL_HOME, 'panns'))
|
|
|
|
|
model.set_state_dict(state_dict)
|
|
|
|
|
return model
|