You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/io/dataloader.py

178 lines
6.2 KiB

3 years ago
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.io import DataLoader
from deepspeech.frontend.utility import read_manifest
from deepspeech.io.batchfy import make_batchset
from deepspeech.io.dataset import TransformDataset
from deepspeech.io.utility import LoadInputsAndTargets
from deepspeech.io.utility import pad_list
from deepspeech.utils.log import Log
__all__ = ["CustomConverter", "BatchDataLoader"]
logger = Log(__name__).getlog()
class CustomConverter():
"""Custom batch converter.
Args:
subsampling_factor (int): The subsampling factor.
dtype (paddle.dtype): Data type to convert.
"""
def __init__(self, subsampling_factor=1, dtype=paddle.float32):
"""Construct a CustomConverter object."""
self.subsampling_factor = subsampling_factor
self.ignore_id = -1
self.dtype = dtype
def __call__(self, batch):
"""Transform a batch and send it to a device.
Args:
batch (list): The batch to transform.
Returns:
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
"""
# batch should be located in list
assert len(batch) == 1
xs, ys = batch[0]
# perform subsampling
if self.subsampling_factor > 1:
xs = [x[::self.subsampling_factor, :] for x in xs]
# get batch of lengths of input sequences
ilens = np.array([x.shape[0] for x in xs])
# perform padding and convert to tensor
# currently only support real number
if xs[0].dtype.kind == "c":
xs_pad_real = pad_list([x.real for x in xs], 0).astype(self.dtype)
xs_pad_imag = pad_list([x.imag for x in xs], 0).astype(self.dtype)
# Note(kamo):
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
# Don't create ComplexTensor and give it E2E here
# because torch.nn.DataParellel can't handle it.
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
else:
xs_pad = pad_list(xs, 0).astype(self.dtype)
ilens = paddle.to_tensor(ilens)
# NOTE: this is for multi-output (e.g., speech translation)
ys_pad = pad_list(
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
self.ignore_id)
olens = np.array([y.shape[0] for y in ys])
return xs_pad, ilens, ys_pad, olens
class BatchDataLoader():
def __init__(self,
json_file: str,
train_mode: bool,
sortagrad: bool=False,
batch_size: int=0,
maxlen_in: float=float('inf'),
maxlen_out: float=float('inf'),
minibatches: int=0,
mini_batch_size: int=1,
batch_count: str='auto',
batch_bins: int=0,
batch_frames_in: int=0,
batch_frames_out: int=0,
batch_frames_inout: int=0,
preprocess_conf=None,
n_iter_processes: int=1,
subsampling_factor: int=1,
num_encs: int=1):
self.json_file = json_file
self.train_mode = train_mode
self.use_sortagrad = sortagrad == -1 or sortagrad > 0
self.batch_size = batch_size
self.maxlen_in = maxlen_in
self.maxlen_out = maxlen_out
self.batch_count = batch_count
self.batch_bins = batch_bins
self.batch_frames_in = batch_frames_in
self.batch_frames_out = batch_frames_out
self.batch_frames_inout = batch_frames_inout
self.subsampling_factor = subsampling_factor
self.num_encs = num_encs
self.preprocess_conf = preprocess_conf
self.n_iter_processes = n_iter_processes
# read json data
data_json = read_manifest(json_file)
logger.info(f"load {json_file} file.")
# make minibatch list (variable length)
self.data = make_batchset(
data_json,
batch_size,
maxlen_in,
maxlen_out,
minibatches, # for debug
min_batch_size=mini_batch_size,
shortest_first=self.use_sortagrad,
count=batch_count,
batch_bins=batch_bins,
batch_frames_in=batch_frames_in,
batch_frames_out=batch_frames_out,
batch_frames_inout=batch_frames_inout,
iaxis=0,
oaxis=0, )
logger.info(f"batchfy data {json_file}: {len(self.data)}.")
self.load = LoadInputsAndTargets(
mode="asr",
load_output=True,
preprocess_conf=preprocess_conf,
preprocess_args={"train":
train_mode}, # Switch the mode of preprocessing
)
# Setup a converter
if num_encs == 1:
self.converter = CustomConverter(
subsampling_factor=subsampling_factor, dtype=dtype)
else:
assert NotImplementedError("not impl CustomConverterMulEnc.")
# hack to make batchsize argument as 1
# actual bathsize is included in a list
# default collate function converts numpy array to pytorch tensor
# we used an empty collate function instead which returns list
self.train_loader = DataLoader(
dataset=TransformDataset(
self.data, lambda data: self.converter([self.load(data)])),
batch_size=1,
shuffle=not use_sortagrad if train_mode else False,
collate_fn=lambda x: x[0],
num_workers=n_iter_processes, )
logger.info(f"dataloader for {json_file}.")
def __repr__(self):
return f"DataLoader {self.json_file}-{self.train_mode}-{self.use_sortagrad}"