You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.2 KiB
178 lines
6.2 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from paddle.io import DataLoader
|
||
|
|
||
|
from deepspeech.frontend.utility import read_manifest
|
||
|
from deepspeech.io.batchfy import make_batchset
|
||
|
from deepspeech.io.dataset import TransformDataset
|
||
|
from deepspeech.io.utility import LoadInputsAndTargets
|
||
|
from deepspeech.io.utility import pad_list
|
||
|
from deepspeech.utils.log import Log
|
||
|
|
||
|
__all__ = ["CustomConverter", "BatchDataLoader"]
|
||
|
|
||
|
logger = Log(__name__).getlog()
|
||
|
|
||
|
|
||
|
class CustomConverter():
|
||
|
"""Custom batch converter.
|
||
|
|
||
|
Args:
|
||
|
subsampling_factor (int): The subsampling factor.
|
||
|
dtype (paddle.dtype): Data type to convert.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, subsampling_factor=1, dtype=paddle.float32):
|
||
|
"""Construct a CustomConverter object."""
|
||
|
self.subsampling_factor = subsampling_factor
|
||
|
self.ignore_id = -1
|
||
|
self.dtype = dtype
|
||
|
|
||
|
def __call__(self, batch):
|
||
|
"""Transform a batch and send it to a device.
|
||
|
|
||
|
Args:
|
||
|
batch (list): The batch to transform.
|
||
|
|
||
|
Returns:
|
||
|
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
|
||
|
|
||
|
"""
|
||
|
# batch should be located in list
|
||
|
assert len(batch) == 1
|
||
|
xs, ys = batch[0]
|
||
|
|
||
|
# perform subsampling
|
||
|
if self.subsampling_factor > 1:
|
||
|
xs = [x[::self.subsampling_factor, :] for x in xs]
|
||
|
|
||
|
# get batch of lengths of input sequences
|
||
|
ilens = np.array([x.shape[0] for x in xs])
|
||
|
|
||
|
# perform padding and convert to tensor
|
||
|
# currently only support real number
|
||
|
if xs[0].dtype.kind == "c":
|
||
|
xs_pad_real = pad_list([x.real for x in xs], 0).astype(self.dtype)
|
||
|
xs_pad_imag = pad_list([x.imag for x in xs], 0).astype(self.dtype)
|
||
|
# Note(kamo):
|
||
|
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
|
||
|
# Don't create ComplexTensor and give it E2E here
|
||
|
# because torch.nn.DataParellel can't handle it.
|
||
|
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
|
||
|
else:
|
||
|
xs_pad = pad_list(xs, 0).astype(self.dtype)
|
||
|
|
||
|
ilens = paddle.to_tensor(ilens)
|
||
|
|
||
|
# NOTE: this is for multi-output (e.g., speech translation)
|
||
|
ys_pad = pad_list(
|
||
|
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
|
||
|
self.ignore_id)
|
||
|
|
||
|
olens = np.array([y.shape[0] for y in ys])
|
||
|
return xs_pad, ilens, ys_pad, olens
|
||
|
|
||
|
|
||
|
class BatchDataLoader():
|
||
|
def __init__(self,
|
||
|
json_file: str,
|
||
|
train_mode: bool,
|
||
|
sortagrad: bool=False,
|
||
|
batch_size: int=0,
|
||
|
maxlen_in: float=float('inf'),
|
||
|
maxlen_out: float=float('inf'),
|
||
|
minibatches: int=0,
|
||
|
mini_batch_size: int=1,
|
||
|
batch_count: str='auto',
|
||
|
batch_bins: int=0,
|
||
|
batch_frames_in: int=0,
|
||
|
batch_frames_out: int=0,
|
||
|
batch_frames_inout: int=0,
|
||
|
preprocess_conf=None,
|
||
|
n_iter_processes: int=1,
|
||
|
subsampling_factor: int=1,
|
||
|
num_encs: int=1):
|
||
|
self.json_file = json_file
|
||
|
self.train_mode = train_mode
|
||
|
|
||
|
self.use_sortagrad = sortagrad == -1 or sortagrad > 0
|
||
|
self.batch_size = batch_size
|
||
|
self.maxlen_in = maxlen_in
|
||
|
self.maxlen_out = maxlen_out
|
||
|
self.batch_count = batch_count
|
||
|
self.batch_bins = batch_bins
|
||
|
self.batch_frames_in = batch_frames_in
|
||
|
self.batch_frames_out = batch_frames_out
|
||
|
self.batch_frames_inout = batch_frames_inout
|
||
|
|
||
|
self.subsampling_factor = subsampling_factor
|
||
|
self.num_encs = num_encs
|
||
|
self.preprocess_conf = preprocess_conf
|
||
|
|
||
|
self.n_iter_processes = n_iter_processes
|
||
|
|
||
|
# read json data
|
||
|
data_json = read_manifest(json_file)
|
||
|
logger.info(f"load {json_file} file.")
|
||
|
|
||
|
# make minibatch list (variable length)
|
||
|
self.data = make_batchset(
|
||
|
data_json,
|
||
|
batch_size,
|
||
|
maxlen_in,
|
||
|
maxlen_out,
|
||
|
minibatches, # for debug
|
||
|
min_batch_size=mini_batch_size,
|
||
|
shortest_first=self.use_sortagrad,
|
||
|
count=batch_count,
|
||
|
batch_bins=batch_bins,
|
||
|
batch_frames_in=batch_frames_in,
|
||
|
batch_frames_out=batch_frames_out,
|
||
|
batch_frames_inout=batch_frames_inout,
|
||
|
iaxis=0,
|
||
|
oaxis=0, )
|
||
|
logger.info(f"batchfy data {json_file}: {len(self.data)}.")
|
||
|
|
||
|
self.load = LoadInputsAndTargets(
|
||
|
mode="asr",
|
||
|
load_output=True,
|
||
|
preprocess_conf=preprocess_conf,
|
||
|
preprocess_args={"train":
|
||
|
train_mode}, # Switch the mode of preprocessing
|
||
|
)
|
||
|
|
||
|
# Setup a converter
|
||
|
if num_encs == 1:
|
||
|
self.converter = CustomConverter(
|
||
|
subsampling_factor=subsampling_factor, dtype=dtype)
|
||
|
else:
|
||
|
assert NotImplementedError("not impl CustomConverterMulEnc.")
|
||
|
|
||
|
# hack to make batchsize argument as 1
|
||
|
# actual bathsize is included in a list
|
||
|
# default collate function converts numpy array to pytorch tensor
|
||
|
# we used an empty collate function instead which returns list
|
||
|
self.train_loader = DataLoader(
|
||
|
dataset=TransformDataset(
|
||
|
self.data, lambda data: self.converter([self.load(data)])),
|
||
|
batch_size=1,
|
||
|
shuffle=not use_sortagrad if train_mode else False,
|
||
|
collate_fn=lambda x: x[0],
|
||
|
num_workers=n_iter_processes, )
|
||
|
logger.info(f"dataloader for {json_file}.")
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"DataLoader {self.json_file}-{self.train_mode}-{self.use_sortagrad}"
|