|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Reference espnet Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""End-to-end speech recognition model decoding script."""
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import random
|
|
|
|
import sys
|
|
|
|
|
|
|
|
import configargparse
|
|
|
|
import numpy as np
|
|
|
|
from distutils.util import strtobool
|
|
|
|
|
|
|
|
|
|
|
|
def get_parser():
|
|
|
|
"""Get default arguments."""
|
|
|
|
parser = configargparse.ArgumentParser(
|
|
|
|
description="Transcribe text from speech using "
|
|
|
|
"a speech recognition model on one CPU or GPU",
|
|
|
|
config_file_parser_class=configargparse.YAMLConfigFileParser,
|
|
|
|
formatter_class=configargparse.ArgumentDefaultsHelpFormatter, )
|
|
|
|
parser.add(
|
|
|
|
'--model-name',
|
|
|
|
type=str,
|
|
|
|
default='u2_kaldi',
|
|
|
|
help='model name, e.g: deepspeech2, u2, u2_kaldi, u2_st')
|
|
|
|
# general configuration
|
|
|
|
parser.add("--config", is_config_file=True, help="Config file path")
|
|
|
|
parser.add(
|
|
|
|
"--config2",
|
|
|
|
is_config_file=True,
|
|
|
|
help="Second config file path that overwrites the settings in `--config`",
|
|
|
|
)
|
|
|
|
parser.add(
|
|
|
|
"--config3",
|
|
|
|
is_config_file=True,
|
|
|
|
help="Third config file path that overwrites the settings "
|
|
|
|
"in `--config` and `--config2`", )
|
|
|
|
|
|
|
|
parser.add_argument("--ngpu", type=int, default=0, help="Number of GPUs")
|
|
|
|
parser.add_argument(
|
|
|
|
"--dtype",
|
|
|
|
choices=("float16", "float32", "float64"),
|
|
|
|
default="float32",
|
|
|
|
help="Float precision (only available in --api v2)", )
|
|
|
|
parser.add_argument("--debugmode", type=int, default=1, help="Debugmode")
|
|
|
|
parser.add_argument("--seed", type=int, default=1, help="Random seed")
|
|
|
|
parser.add_argument(
|
|
|
|
"--verbose", "-V", type=int, default=2, help="Verbose option")
|
|
|
|
parser.add_argument(
|
|
|
|
"--batchsize",
|
|
|
|
type=int,
|
|
|
|
default=1,
|
|
|
|
help="Batch size for beam search (0: means no batch processing)", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--preprocess-conf",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="The configuration file for the pre-processing", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--api",
|
|
|
|
default="v2",
|
|
|
|
choices=["v2"],
|
|
|
|
help="Beam search APIs "
|
|
|
|
"v2: Experimental API. It supports any models that implements ScorerInterface.",
|
|
|
|
)
|
|
|
|
# task related
|
|
|
|
parser.add_argument(
|
|
|
|
"--recog-json", type=str, help="Filename of recognition data (json)")
|
|
|
|
parser.add_argument(
|
|
|
|
"--result-label",
|
|
|
|
type=str,
|
|
|
|
required=True,
|
|
|
|
help="Filename of result label data (json)", )
|
|
|
|
# model (parameter) related
|
|
|
|
parser.add_argument(
|
|
|
|
"--model",
|
|
|
|
type=str,
|
|
|
|
required=True,
|
|
|
|
help="Model file parameters to read")
|
|
|
|
parser.add_argument(
|
|
|
|
"--model-conf", type=str, default=None, help="Model config file")
|
|
|
|
parser.add_argument(
|
|
|
|
"--num-spkrs",
|
|
|
|
type=int,
|
|
|
|
default=1,
|
|
|
|
choices=[1, 2],
|
|
|
|
help="Number of speakers in the speech", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--num-encs",
|
|
|
|
default=1,
|
|
|
|
type=int,
|
|
|
|
help="Number of encoders in the model.")
|
|
|
|
# search related
|
|
|
|
parser.add_argument(
|
|
|
|
"--nbest", type=int, default=1, help="Output N-best hypotheses")
|
|
|
|
parser.add_argument("--beam-size", type=int, default=1, help="Beam size")
|
|
|
|
parser.add_argument(
|
|
|
|
"--penalty", type=float, default=0.0, help="Incertion penalty")
|
|
|
|
parser.add_argument(
|
|
|
|
"--maxlenratio",
|
|
|
|
type=float,
|
|
|
|
default=0.0,
|
|
|
|
help="""Input length ratio to obtain max output length.
|
|
|
|
If maxlenratio=0.0 (default), it uses a end-detect function
|
|
|
|
to automatically find maximum hypothesis lengths.
|
|
|
|
If maxlenratio<0.0, its absolute value is interpreted
|
|
|
|
as a constant max output length""", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--minlenratio",
|
|
|
|
type=float,
|
|
|
|
default=0.0,
|
|
|
|
help="Input length ratio to obtain min output length", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--ctc-weight",
|
|
|
|
type=float,
|
|
|
|
default=0.0,
|
|
|
|
help="CTC weight in joint decoding")
|
|
|
|
parser.add_argument(
|
|
|
|
"--weights-ctc-dec",
|
|
|
|
type=float,
|
|
|
|
action="append",
|
|
|
|
help="ctc weight assigned to each encoder during decoding."
|
|
|
|
"[in multi-encoder mode only]", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--ctc-window-margin",
|
|
|
|
type=int,
|
|
|
|
default=0,
|
|
|
|
help="""Use CTC window with margin parameter to accelerate
|
|
|
|
CTC/attention decoding especially on GPU. Smaller magin
|
|
|
|
makes decoding faster, but may increase search errors.
|
|
|
|
If margin=0 (default), this function is disabled""", )
|
|
|
|
# transducer related
|
|
|
|
parser.add_argument(
|
|
|
|
"--search-type",
|
|
|
|
type=str,
|
|
|
|
default="default",
|
|
|
|
choices=["default", "nsc", "tsd", "alsd", "maes"],
|
|
|
|
help="""Type of beam search implementation to use during inference.
|
|
|
|
Can be either: default beam search ("default"),
|
|
|
|
N-Step Constrained beam search ("nsc"), Time-Synchronous Decoding ("tsd"),
|
|
|
|
Alignment-Length Synchronous Decoding ("alsd") or
|
|
|
|
modified Adaptive Expansion Search ("maes").""", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--nstep",
|
|
|
|
type=int,
|
|
|
|
default=1,
|
|
|
|
help="""Number of expansion steps allowed in NSC beam search or mAES
|
|
|
|
(nstep > 0 for NSC and nstep > 1 for mAES).""", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--prefix-alpha",
|
|
|
|
type=int,
|
|
|
|
default=2,
|
|
|
|
help="Length prefix difference allowed in NSC beam search or mAES.", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--max-sym-exp",
|
|
|
|
type=int,
|
|
|
|
default=2,
|
|
|
|
help="Number of symbol expansions allowed in TSD.", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--u-max",
|
|
|
|
type=int,
|
|
|
|
default=400,
|
|
|
|
help="Length prefix difference allowed in ALSD.", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--expansion-gamma",
|
|
|
|
type=float,
|
|
|
|
default=2.3,
|
|
|
|
help="Allowed logp difference for prune-by-value method in mAES.", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--expansion-beta",
|
|
|
|
type=int,
|
|
|
|
default=2,
|
|
|
|
help="""Number of additional candidates for expanded hypotheses
|
|
|
|
selection in mAES.""", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--score-norm",
|
|
|
|
type=strtobool,
|
|
|
|
nargs="?",
|
|
|
|
default=True,
|
|
|
|
help="Normalize final hypotheses' score by length", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--softmax-temperature",
|
|
|
|
type=float,
|
|
|
|
default=1.0,
|
|
|
|
help="Penalization term for softmax function.", )
|
|
|
|
# rnnlm related
|
|
|
|
parser.add_argument(
|
|
|
|
"--rnnlm", type=str, default=None, help="RNNLM model file to read")
|
|
|
|
parser.add_argument(
|
|
|
|
"--rnnlm-conf",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="RNNLM model config file to read")
|
|
|
|
parser.add_argument(
|
|
|
|
"--word-rnnlm",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="Word RNNLM model file to read")
|
|
|
|
parser.add_argument(
|
|
|
|
"--word-rnnlm-conf",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="Word RNNLM model config file to read", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--word-dict", type=str, default=None, help="Word list to read")
|
|
|
|
parser.add_argument(
|
|
|
|
"--lm-weight", type=float, default=0.1, help="RNNLM weight")
|
|
|
|
# ngram related
|
|
|
|
parser.add_argument(
|
|
|
|
"--ngram-model",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
help="ngram model file to read")
|
|
|
|
parser.add_argument(
|
|
|
|
"--ngram-weight", type=float, default=0.1, help="ngram weight")
|
|
|
|
parser.add_argument(
|
|
|
|
"--ngram-scorer",
|
|
|
|
type=str,
|
|
|
|
default="part",
|
|
|
|
choices=("full", "part"),
|
|
|
|
help="""if the ngram is set as a part scorer, similar with CTC scorer,
|
|
|
|
ngram scorer only scores topK hypethesis.
|
|
|
|
if the ngram is set as full scorer, ngram scorer scores all hypthesis
|
|
|
|
the decoding speed of part scorer is musch faster than full one""",
|
|
|
|
)
|
|
|
|
# streaming related
|
|
|
|
parser.add_argument(
|
|
|
|
"--streaming-mode",
|
|
|
|
type=str,
|
|
|
|
default=None,
|
|
|
|
choices=["window", "segment"],
|
|
|
|
help="""Use streaming recognizer for inference.
|
|
|
|
`--batchsize` must be set to 0 to enable this mode""", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--streaming-window", type=int, default=10, help="Window size")
|
|
|
|
parser.add_argument(
|
|
|
|
"--streaming-min-blank-dur",
|
|
|
|
type=int,
|
|
|
|
default=10,
|
|
|
|
help="Minimum blank duration threshold", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--streaming-onset-margin", type=int, default=1, help="Onset margin")
|
|
|
|
parser.add_argument(
|
|
|
|
"--streaming-offset-margin", type=int, default=1, help="Offset margin")
|
|
|
|
# non-autoregressive related
|
|
|
|
# Mask CTC related. See https://arxiv.org/abs/2005.08700 for the detail.
|
|
|
|
parser.add_argument(
|
|
|
|
"--maskctc-n-iterations",
|
|
|
|
type=int,
|
|
|
|
default=10,
|
|
|
|
help="Number of decoding iterations."
|
|
|
|
"For Mask CTC, set 0 to predict 1 mask/iter.", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--maskctc-probability-threshold",
|
|
|
|
type=float,
|
|
|
|
default=0.999,
|
|
|
|
help="Threshold probability for CTC output", )
|
|
|
|
# quantize model related
|
|
|
|
parser.add_argument(
|
|
|
|
"--quantize-config",
|
|
|
|
nargs="*",
|
|
|
|
help="Quantize config list. E.g.: --quantize-config=[Linear,LSTM,GRU]",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--quantize-dtype",
|
|
|
|
type=str,
|
|
|
|
default="qint8",
|
|
|
|
help="Dtype dynamic quantize")
|
|
|
|
parser.add_argument(
|
|
|
|
"--quantize-asr-model",
|
|
|
|
type=bool,
|
|
|
|
default=False,
|
|
|
|
help="Quantize asr model", )
|
|
|
|
parser.add_argument(
|
|
|
|
"--quantize-lm-model",
|
|
|
|
type=bool,
|
|
|
|
default=False,
|
|
|
|
help="Quantize lm model", )
|
|
|
|
return parser
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
"""Run the main decoding function."""
|
|
|
|
parser = get_parser()
|
|
|
|
parser.add_argument(
|
|
|
|
"--output", metavar="CKPT_DIR", help="path to save checkpoint.")
|
|
|
|
parser.add_argument(
|
|
|
|
"--checkpoint_path", type=str, help="path to load checkpoint")
|
|
|
|
parser.add_argument("--dict-path", type=str, help="path to load checkpoint")
|
|
|
|
args = parser.parse_args(args)
|
|
|
|
|
|
|
|
if args.ngpu == 0 and args.dtype == "float16":
|
|
|
|
raise ValueError(
|
|
|
|
f"--dtype {args.dtype} does not support the CPU backend.")
|
|
|
|
|
|
|
|
# logging info
|
|
|
|
if args.verbose == 1:
|
|
|
|
logging.basicConfig(
|
|
|
|
level=logging.INFO,
|
|
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
|
|
)
|
|
|
|
elif args.verbose == 2:
|
|
|
|
logging.basicConfig(
|
|
|
|
level=logging.DEBUG,
|
|
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
logging.basicConfig(
|
|
|
|
level=logging.WARN,
|
|
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
|
|
)
|
|
|
|
logging.warning("Skip DEBUG/INFO messages")
|
|
|
|
logging.info(args)
|
|
|
|
|
|
|
|
# check CUDA_VISIBLE_DEVICES
|
|
|
|
if args.ngpu > 0:
|
|
|
|
cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
|
|
|
|
if cvd is None:
|
|
|
|
logging.warning("CUDA_VISIBLE_DEVICES is not set.")
|
|
|
|
elif args.ngpu != len(cvd.split(",")):
|
|
|
|
logging.error("#gpus is not matched with CUDA_VISIBLE_DEVICES.")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
# TODO(mn5k): support of multiple GPUs
|
|
|
|
if args.ngpu > 1:
|
|
|
|
logging.error("The program only supports ngpu=1.")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
# display PYTHONPATH
|
|
|
|
logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)"))
|
|
|
|
|
|
|
|
# seed setting
|
|
|
|
random.seed(args.seed)
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
logging.info("set random seed = %d" % args.seed)
|
|
|
|
|
|
|
|
# validate rnn options
|
|
|
|
if args.rnnlm is not None and args.word_rnnlm is not None:
|
|
|
|
logging.error(
|
|
|
|
"It seems that both --rnnlm and --word-rnnlm are specified. "
|
|
|
|
"Please use either option.")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
# recog
|
|
|
|
if args.num_spkrs == 1:
|
|
|
|
if args.num_encs == 1:
|
|
|
|
# Experimental API that supports custom LMs
|
|
|
|
if args.api == "v2":
|
|
|
|
from paddlespeech.s2t.decoders.recog import recog_v2
|
|
|
|
recog_v2(args)
|
|
|
|
else:
|
|
|
|
raise ValueError("Only support --api v2")
|
|
|
|
else:
|
|
|
|
if args.api == "v2":
|
|
|
|
raise NotImplementedError(
|
|
|
|
f"--num-encs {args.num_encs} > 1 is not supported in --api v2"
|
|
|
|
)
|
|
|
|
elif args.num_spkrs == 2:
|
|
|
|
raise ValueError("asr_mix not supported.")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main(sys.argv[1:])
|