|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
"""Multi-Head Attention layer definition."""
|
|
|
|
import math
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
from paddlespeech.t2s.modules.masked_fill import masked_fill
|
|
|
|
|
|
|
|
|
|
|
|
class MultiHeadedAttention(nn.Layer):
|
|
|
|
"""Multi-Head Attention layer.
|
|
|
|
Args:
|
|
|
|
n_head (int):
|
|
|
|
The number of heads.
|
|
|
|
n_feat (int):
|
|
|
|
The number of features.
|
|
|
|
dropout_rate (float):
|
|
|
|
Dropout rate.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, n_head, n_feat, dropout_rate):
|
|
|
|
"""Construct an MultiHeadedAttention object."""
|
|
|
|
super().__init__()
|
|
|
|
assert n_feat % n_head == 0
|
|
|
|
# We assume d_v always equals d_k
|
|
|
|
self.d_k = n_feat // n_head
|
|
|
|
self.h = n_head
|
|
|
|
self.linear_q = nn.Linear(n_feat, n_feat, bias_attr=True)
|
|
|
|
self.linear_k = nn.Linear(n_feat, n_feat, bias_attr=True)
|
|
|
|
self.linear_v = nn.Linear(n_feat, n_feat, bias_attr=True)
|
|
|
|
self.linear_out = nn.Linear(n_feat, n_feat, bias_attr=True)
|
|
|
|
self.attn = None
|
|
|
|
self.dropout = nn.Dropout(p=dropout_rate)
|
|
|
|
|
|
|
|
def forward_qkv(self, query, key, value):
|
|
|
|
"""Transform query, key and value.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query(Tensor):
|
|
|
|
query tensor (#batch, time1, size).
|
|
|
|
key(Tensor):
|
|
|
|
Key tensor (#batch, time2, size).
|
|
|
|
value(Tensor):
|
|
|
|
Value tensor (#batch, time2, size).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor:
|
|
|
|
Transformed query tensor (#batch, n_head, time1, d_k).
|
|
|
|
Tensor:
|
|
|
|
Transformed key tensor (#batch, n_head, time2, d_k).
|
|
|
|
Tensor:
|
|
|
|
Transformed value tensor (#batch, n_head, time2, d_k).
|
|
|
|
"""
|
|
|
|
n_batch = paddle.shape(query)[0]
|
|
|
|
|
|
|
|
q = paddle.reshape(
|
|
|
|
self.linear_q(query), [n_batch, -1, self.h, self.d_k])
|
|
|
|
k = paddle.reshape(self.linear_k(key), [n_batch, -1, self.h, self.d_k])
|
|
|
|
v = paddle.reshape(
|
|
|
|
self.linear_v(value), [n_batch, -1, self.h, self.d_k])
|
|
|
|
|
|
|
|
# (batch, head, time1, d_k)
|
|
|
|
q = q.transpose((0, 2, 1, 3))
|
|
|
|
# (batch, head, time2, d_k)
|
|
|
|
k = k.transpose((0, 2, 1, 3))
|
|
|
|
# (batch, head, time2, d_k)
|
|
|
|
v = v.transpose((0, 2, 1, 3))
|
|
|
|
return q, k, v
|
|
|
|
|
|
|
|
def forward_attention(self, value, scores, mask=None):
|
|
|
|
"""Compute attention context vector.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
value(Tensor):
|
|
|
|
Transformed value (#batch, n_head, time2, d_k).
|
|
|
|
scores(Tensor):
|
|
|
|
Attention score (#batch, n_head, time1, time2).
|
|
|
|
mask(Tensor, optional):
|
|
|
|
Mask (#batch, 1, time2) or (#batch, time1, time2). (Default value = None)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2).
|
|
|
|
"""
|
|
|
|
n_batch = paddle.shape(value)[0]
|
|
|
|
softmax = paddle.nn.Softmax(axis=-1)
|
|
|
|
if mask is not None:
|
|
|
|
mask = mask.unsqueeze(1)
|
|
|
|
mask = paddle.logical_not(mask)
|
|
|
|
# assume scores.dtype==paddle.float32, we only use "float32" here
|
|
|
|
dtype = str(scores.dtype).split(".")[-1]
|
|
|
|
min_value = numpy.finfo(dtype).min
|
|
|
|
scores = masked_fill(scores, mask, min_value)
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
self.attn = softmax(scores)
|
|
|
|
self.attn = masked_fill(self.attn, mask, 0.0)
|
|
|
|
else:
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
self.attn = softmax(scores)
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
p_attn = self.dropout(self.attn)
|
|
|
|
# (batch, head, time1, time2) * (batch, head, time2, d_k) -> # (batch, head, time1, d_k)
|
|
|
|
x = paddle.matmul(p_attn, value)
|
|
|
|
# (batch, time1, d_model)
|
|
|
|
x = (paddle.reshape(
|
|
|
|
x.transpose((0, 2, 1, 3)), (n_batch, -1, self.h * self.d_k)))
|
|
|
|
# (batch, time1, d_model)
|
|
|
|
return self.linear_out(x)
|
|
|
|
|
|
|
|
def forward(self, query, key, value, mask=None):
|
|
|
|
"""Compute scaled dot product attention.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query(Tensor):
|
|
|
|
Query tensor (#batch, time1, size).
|
|
|
|
key(Tensor):
|
|
|
|
Key tensor (#batch, time2, size).
|
|
|
|
value(Tensor):
|
|
|
|
Value tensor (#batch, time2, size).
|
|
|
|
mask(Tensor, optional):
|
|
|
|
Mask tensor (#batch, 1, time2) or (#batch, time1, time2). (Default value = None)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: Output tensor (#batch, time1, d_model).
|
|
|
|
"""
|
|
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
|
|
scores = paddle.matmul(q, k.transpose(
|
|
|
|
(0, 1, 3, 2))) / math.sqrt(self.d_k)
|
|
|
|
|
|
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
|
|
|
|
|
|
|
|
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
|
|
|
|
"""Multi-Head Attention layer with relative position encoding (new implementation).
|
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
|
|
|
Paper: https://arxiv.org/abs/1901.02860
|
|
|
|
|
|
|
|
Args:
|
|
|
|
n_head (int):
|
|
|
|
The number of heads.
|
|
|
|
n_feat (int):
|
|
|
|
The number of features.
|
|
|
|
dropout_rate (float):
|
|
|
|
Dropout rate.
|
|
|
|
zero_triu (bool):
|
|
|
|
Whether to zero the upper triangular part of attention matrix.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False):
|
|
|
|
"""Construct an RelPositionMultiHeadedAttention object."""
|
|
|
|
super().__init__(n_head, n_feat, dropout_rate)
|
|
|
|
self.zero_triu = zero_triu
|
|
|
|
# linear transformation for positional encoding
|
|
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias_attr=False)
|
|
|
|
# these two learnable bias are used in matrix c and matrix d
|
|
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
|
|
|
|
|
|
self.pos_bias_u = paddle.create_parameter(
|
|
|
|
shape=(self.h, self.d_k),
|
|
|
|
dtype='float32',
|
|
|
|
default_initializer=paddle.nn.initializer.XavierUniform())
|
|
|
|
self.pos_bias_v = paddle.create_parameter(
|
|
|
|
shape=(self.h, self.d_k),
|
|
|
|
dtype='float32',
|
|
|
|
default_initializer=paddle.nn.initializer.XavierUniform())
|
|
|
|
|
|
|
|
def rel_shift(self, x):
|
|
|
|
"""Compute relative positional encoding.
|
|
|
|
Args:
|
|
|
|
x(Tensor):
|
|
|
|
Input tensor (batch, head, time1, 2*time1-1).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: Output tensor.
|
|
|
|
"""
|
|
|
|
b, h, t1, t2 = paddle.shape(x)
|
|
|
|
zero_pad = paddle.zeros((b, h, t1, 1))
|
|
|
|
x_padded = paddle.concat([zero_pad, x], axis=-1)
|
|
|
|
x_padded = x_padded.reshape([b, h, t2 + 1, t1])
|
|
|
|
# only keep the positions from 0 to time2
|
|
|
|
x = x_padded[:, :, 1:].reshape([b, h, t1, t2])[:, :, :, :t2 // 2 + 1]
|
|
|
|
|
|
|
|
if self.zero_triu:
|
|
|
|
ones = paddle.ones((t1, t2))
|
|
|
|
x = x * paddle.tril(ones, t2 - 1)[None, None, :, :]
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, query, key, value, pos_emb, mask):
|
|
|
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query(Tensor):
|
|
|
|
Query tensor (#batch, time1, size).
|
|
|
|
key(Tensor):
|
|
|
|
Key tensor (#batch, time2, size).
|
|
|
|
value(Tensor):
|
|
|
|
Value tensor (#batch, time2, size).
|
|
|
|
pos_emb(Tensor):
|
|
|
|
Positional embedding tensor (#batch, 2*time1-1, size).
|
|
|
|
mask(Tensor):
|
|
|
|
Mask tensor (#batch, 1, time2) or (#batch, time1, time2).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: Output tensor (#batch, time1, d_model).
|
|
|
|
"""
|
|
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
|
|
# (batch, time1, head, d_k)
|
|
|
|
q = q.transpose([0, 2, 1, 3])
|
|
|
|
|
|
|
|
n_batch_pos = paddle.shape(pos_emb)[0]
|
|
|
|
p = self.linear_pos(pos_emb).reshape(
|
|
|
|
[n_batch_pos, -1, self.h, self.d_k])
|
|
|
|
# (batch, head, 2*time1-1, d_k)
|
|
|
|
p = p.transpose([0, 2, 1, 3])
|
|
|
|
# (batch, head, time1, d_k)
|
|
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose([0, 2, 1, 3])
|
|
|
|
# (batch, head, time1, d_k)
|
|
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose([0, 2, 1, 3])
|
|
|
|
|
|
|
|
# compute attention score
|
|
|
|
# first compute matrix a and matrix c
|
|
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
matrix_ac = paddle.matmul(q_with_bias_u, k.transpose([0, 1, 3, 2]))
|
|
|
|
|
|
|
|
# compute matrix b and matrix d
|
|
|
|
# (batch, head, time1, 2*time1-1)
|
|
|
|
matrix_bd = paddle.matmul(q_with_bias_v, p.transpose([0, 1, 3, 2]))
|
|
|
|
matrix_bd = self.rel_shift(matrix_bd)
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
|
|
|
|
|
|
|
|
return self.forward_attention(v, scores, mask)
|
|
|
|
|
|
|
|
|
|
|
|
class LegacyRelPositionMultiHeadedAttention(MultiHeadedAttention):
|
|
|
|
"""Multi-Head Attention layer with relative position encoding (old version).
|
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816.
|
|
|
|
Paper: https://arxiv.org/abs/1901.02860
|
|
|
|
|
|
|
|
Args:
|
|
|
|
n_head (int):
|
|
|
|
The number of heads.
|
|
|
|
n_feat (int):
|
|
|
|
The number of features.
|
|
|
|
dropout_rate (float):
|
|
|
|
Dropout rate.
|
|
|
|
zero_triu (bool):
|
|
|
|
Whether to zero the upper triangular part of attention matrix.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False):
|
|
|
|
"""Construct an RelPositionMultiHeadedAttention object."""
|
|
|
|
super().__init__(n_head, n_feat, dropout_rate)
|
|
|
|
self.zero_triu = zero_triu
|
|
|
|
# linear transformation for positional encoding
|
|
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias_attr=False)
|
|
|
|
# these two learnable bias are used in matrix c and matrix d
|
|
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
|
|
|
|
|
|
self.pos_bias_u = paddle.create_parameter(
|
|
|
|
shape=(self.h, self.d_k),
|
|
|
|
dtype='float32',
|
|
|
|
default_initializer=paddle.nn.initializer.XavierUniform())
|
|
|
|
self.pos_bias_v = paddle.create_parameter(
|
|
|
|
shape=(self.h, self.d_k),
|
|
|
|
dtype='float32',
|
|
|
|
default_initializer=paddle.nn.initializer.XavierUniform())
|
|
|
|
|
|
|
|
def rel_shift(self, x):
|
|
|
|
"""Compute relative positional encoding.
|
|
|
|
Args:
|
|
|
|
x(Tensor):
|
|
|
|
Input tensor (batch, head, time1, time2).
|
|
|
|
Returns:
|
|
|
|
Tensor:Output tensor.
|
|
|
|
"""
|
|
|
|
b, h, t1, t2 = paddle.shape(x)
|
|
|
|
zero_pad = paddle.zeros((b, h, t1, 1))
|
|
|
|
x_padded = paddle.concat([zero_pad, x], axis=-1)
|
|
|
|
x_padded = paddle.reshape(x_padded, [b, h, t2 + 1, t1])
|
|
|
|
# only keep the positions from 0 to time2
|
|
|
|
x = paddle.reshape(x_padded[:, :, 1:], [b, h, t1, t2])
|
|
|
|
|
|
|
|
if self.zero_triu:
|
|
|
|
ones = paddle.ones((t1, t2))
|
|
|
|
x = x * paddle.tril(ones, t2 - 1)[None, None, :, :]
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, query, key, value, pos_emb, mask):
|
|
|
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query(Tensor): Query tensor (#batch, time1, size).
|
|
|
|
key(Tensor): Key tensor (#batch, time2, size).
|
|
|
|
value(Tensor): Value tensor (#batch, time2, size).
|
|
|
|
pos_emb(Tensor): Positional embedding tensor (#batch, time1, size).
|
|
|
|
mask(Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor: Output tensor (#batch, time1, d_model).
|
|
|
|
"""
|
|
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
|
|
# (batch, time1, head, d_k)
|
|
|
|
q = paddle.transpose(q, [0, 2, 1, 3])
|
|
|
|
|
|
|
|
n_batch_pos = paddle.shape(pos_emb)[0]
|
|
|
|
p = paddle.reshape(
|
|
|
|
self.linear_pos(pos_emb), [n_batch_pos, -1, self.h, self.d_k])
|
|
|
|
# (batch, head, time1, d_k)
|
|
|
|
p = paddle.transpose(p, [0, 2, 1, 3])
|
|
|
|
# (batch, head, time1, d_k)
|
|
|
|
q_with_bias_u = paddle.transpose((q + self.pos_bias_u), [0, 2, 1, 3])
|
|
|
|
# (batch, head, time1, d_k)
|
|
|
|
q_with_bias_v = paddle.transpose((q + self.pos_bias_v), [0, 2, 1, 3])
|
|
|
|
|
|
|
|
# compute attention score
|
|
|
|
# first compute matrix a and matrix c
|
|
|
|
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
matrix_ac = paddle.matmul(q_with_bias_u,
|
|
|
|
paddle.transpose(k, [0, 1, 3, 2]))
|
|
|
|
|
|
|
|
# compute matrix b and matrix d
|
|
|
|
# (batch, head, time1, time1)
|
|
|
|
matrix_bd = paddle.matmul(q_with_bias_v,
|
|
|
|
paddle.transpose(p, [0, 1, 3, 2]))
|
|
|
|
matrix_bd = self.rel_shift(matrix_bd)
|
|
|
|
# (batch, head, time1, time2)
|
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
|
|
|
|
|
|
|
|
return self.forward_attention(v, scores, mask)
|