|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import base64
|
|
|
|
import io
|
|
|
|
import os
|
|
|
|
import time
|
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import librosa
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import soundfile as sf
|
|
|
|
from scipy.io import wavfile
|
|
|
|
|
|
|
|
from paddlespeech.cli.log import logger
|
|
|
|
from paddlespeech.cli.tts.infer import TTSExecutor
|
|
|
|
from paddlespeech.cli.utils import download_and_decompress
|
|
|
|
from paddlespeech.cli.utils import MODEL_HOME
|
|
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
|
|
from paddlespeech.server.utils.audio_process import change_speed
|
|
|
|
from paddlespeech.server.utils.errors import ErrorCode
|
|
|
|
from paddlespeech.server.utils.exception import ServerBaseException
|
|
|
|
from paddlespeech.server.utils.paddle_predictor import init_predictor
|
|
|
|
from paddlespeech.server.utils.paddle_predictor import run_model
|
|
|
|
from paddlespeech.t2s.frontend import English
|
|
|
|
from paddlespeech.t2s.frontend.zh_frontend import Frontend
|
|
|
|
|
|
|
|
__all__ = ['TTSEngine']
|
|
|
|
|
|
|
|
# Static model applied on paddle inference
|
|
|
|
pretrained_models = {
|
|
|
|
# speedyspeech
|
|
|
|
"speedyspeech_csmsc-zh": {
|
|
|
|
'url':
|
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/speedyspeech/speedyspeech_nosil_baker_static_0.5.zip',
|
|
|
|
'md5':
|
|
|
|
'f10cbdedf47dc7a9668d2264494e1823',
|
|
|
|
'model':
|
|
|
|
'speedyspeech_csmsc.pdmodel',
|
|
|
|
'params':
|
|
|
|
'speedyspeech_csmsc.pdiparams',
|
|
|
|
'phones_dict':
|
|
|
|
'phone_id_map.txt',
|
|
|
|
'tones_dict':
|
|
|
|
'tone_id_map.txt',
|
|
|
|
'sample_rate':
|
|
|
|
24000,
|
|
|
|
},
|
|
|
|
# fastspeech2
|
|
|
|
"fastspeech2_csmsc-zh": {
|
|
|
|
'url':
|
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_static_0.4.zip',
|
|
|
|
'md5':
|
|
|
|
'9788cd9745e14c7a5d12d32670b2a5a7',
|
|
|
|
'model':
|
|
|
|
'fastspeech2_csmsc.pdmodel',
|
|
|
|
'params':
|
|
|
|
'fastspeech2_csmsc.pdiparams',
|
|
|
|
'phones_dict':
|
|
|
|
'phone_id_map.txt',
|
|
|
|
'sample_rate':
|
|
|
|
24000,
|
|
|
|
},
|
|
|
|
# pwgan
|
|
|
|
"pwgan_csmsc-zh": {
|
|
|
|
'url':
|
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/pwgan/pwg_baker_static_0.4.zip',
|
|
|
|
'md5':
|
|
|
|
'e3504aed9c5a290be12d1347836d2742',
|
|
|
|
'model':
|
|
|
|
'pwgan_csmsc.pdmodel',
|
|
|
|
'params':
|
|
|
|
'pwgan_csmsc.pdiparams',
|
|
|
|
'sample_rate':
|
|
|
|
24000,
|
|
|
|
},
|
|
|
|
# mb_melgan
|
|
|
|
"mb_melgan_csmsc-zh": {
|
|
|
|
'url':
|
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_static_0.1.1.zip',
|
|
|
|
'md5':
|
|
|
|
'ac6eee94ba483421d750433f4c3b8d36',
|
|
|
|
'model':
|
|
|
|
'mb_melgan_csmsc.pdmodel',
|
|
|
|
'params':
|
|
|
|
'mb_melgan_csmsc.pdiparams',
|
|
|
|
'sample_rate':
|
|
|
|
24000,
|
|
|
|
},
|
|
|
|
# hifigan
|
|
|
|
"hifigan_csmsc-zh": {
|
|
|
|
'url':
|
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_static_0.1.1.zip',
|
|
|
|
'md5':
|
|
|
|
'7edd8c436b3a5546b3a7cb8cff9d5a0c',
|
|
|
|
'model':
|
|
|
|
'hifigan_csmsc.pdmodel',
|
|
|
|
'params':
|
|
|
|
'hifigan_csmsc.pdiparams',
|
|
|
|
'sample_rate':
|
|
|
|
24000,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class TTSServerExecutor(TTSExecutor):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
pass
|
|
|
|
|
|
|
|
def _get_pretrained_path(self, tag: str) -> os.PathLike:
|
|
|
|
"""
|
|
|
|
Download and returns pretrained resources path of current task.
|
|
|
|
"""
|
|
|
|
assert tag in pretrained_models, 'Can not find pretrained resources of {}.'.format(
|
|
|
|
tag)
|
|
|
|
|
|
|
|
res_path = os.path.join(MODEL_HOME, tag)
|
|
|
|
decompressed_path = download_and_decompress(pretrained_models[tag],
|
|
|
|
res_path)
|
|
|
|
decompressed_path = os.path.abspath(decompressed_path)
|
|
|
|
logger.info(
|
|
|
|
'Use pretrained model stored in: {}'.format(decompressed_path))
|
|
|
|
return decompressed_path
|
|
|
|
|
|
|
|
def _init_from_path(
|
|
|
|
self,
|
|
|
|
am: str='fastspeech2_csmsc',
|
|
|
|
am_model: Optional[os.PathLike]=None,
|
|
|
|
am_params: Optional[os.PathLike]=None,
|
|
|
|
am_sample_rate: int=24000,
|
|
|
|
phones_dict: Optional[os.PathLike]=None,
|
|
|
|
tones_dict: Optional[os.PathLike]=None,
|
|
|
|
speaker_dict: Optional[os.PathLike]=None,
|
|
|
|
voc: str='pwgan_csmsc',
|
|
|
|
voc_model: Optional[os.PathLike]=None,
|
|
|
|
voc_params: Optional[os.PathLike]=None,
|
|
|
|
voc_sample_rate: int=24000,
|
|
|
|
lang: str='zh',
|
|
|
|
am_predictor_conf: dict=None,
|
|
|
|
voc_predictor_conf: dict=None, ):
|
|
|
|
"""
|
|
|
|
Init model and other resources from a specific path.
|
|
|
|
"""
|
|
|
|
if hasattr(self, 'am_predictor') and hasattr(self, 'voc_predictor'):
|
|
|
|
logger.info('Models had been initialized.')
|
|
|
|
return
|
|
|
|
# am
|
|
|
|
am_tag = am + '-' + lang
|
|
|
|
if am_model is None or am_params is None or phones_dict is None:
|
|
|
|
am_res_path = self._get_pretrained_path(am_tag)
|
|
|
|
self.am_res_path = am_res_path
|
|
|
|
self.am_model = os.path.join(am_res_path,
|
|
|
|
pretrained_models[am_tag]['model'])
|
|
|
|
self.am_params = os.path.join(am_res_path,
|
|
|
|
pretrained_models[am_tag]['params'])
|
|
|
|
# must have phones_dict in acoustic
|
|
|
|
self.phones_dict = os.path.join(
|
|
|
|
am_res_path, pretrained_models[am_tag]['phones_dict'])
|
|
|
|
self.am_sample_rate = pretrained_models[am_tag]['sample_rate']
|
|
|
|
|
|
|
|
logger.info(am_res_path)
|
|
|
|
logger.info(self.am_model)
|
|
|
|
logger.info(self.am_params)
|
|
|
|
else:
|
|
|
|
self.am_model = os.path.abspath(am_model)
|
|
|
|
self.am_params = os.path.abspath(am_params)
|
|
|
|
self.phones_dict = os.path.abspath(phones_dict)
|
|
|
|
self.am_sample_rate = am_sample_rate
|
|
|
|
self.am_res_path = os.path.dirname(os.path.abspath(self.am_model))
|
|
|
|
logger.info("self.phones_dict: {}".format(self.phones_dict))
|
|
|
|
|
|
|
|
# for speedyspeech
|
|
|
|
self.tones_dict = None
|
|
|
|
if 'tones_dict' in pretrained_models[am_tag]:
|
|
|
|
self.tones_dict = os.path.join(
|
|
|
|
am_res_path, pretrained_models[am_tag]['tones_dict'])
|
|
|
|
if tones_dict:
|
|
|
|
self.tones_dict = tones_dict
|
|
|
|
|
|
|
|
# for multi speaker fastspeech2
|
|
|
|
self.speaker_dict = None
|
|
|
|
if 'speaker_dict' in pretrained_models[am_tag]:
|
|
|
|
self.speaker_dict = os.path.join(
|
|
|
|
am_res_path, pretrained_models[am_tag]['speaker_dict'])
|
|
|
|
if speaker_dict:
|
|
|
|
self.speaker_dict = speaker_dict
|
|
|
|
|
|
|
|
# voc
|
|
|
|
voc_tag = voc + '-' + lang
|
|
|
|
if voc_model is None or voc_params is None:
|
|
|
|
voc_res_path = self._get_pretrained_path(voc_tag)
|
|
|
|
self.voc_res_path = voc_res_path
|
|
|
|
self.voc_model = os.path.join(voc_res_path,
|
|
|
|
pretrained_models[voc_tag]['model'])
|
|
|
|
self.voc_params = os.path.join(voc_res_path,
|
|
|
|
pretrained_models[voc_tag]['params'])
|
|
|
|
self.voc_sample_rate = pretrained_models[voc_tag]['sample_rate']
|
|
|
|
logger.info(voc_res_path)
|
|
|
|
logger.info(self.voc_model)
|
|
|
|
logger.info(self.voc_params)
|
|
|
|
else:
|
|
|
|
self.voc_model = os.path.abspath(voc_model)
|
|
|
|
self.voc_params = os.path.abspath(voc_params)
|
|
|
|
self.voc_sample_rate = voc_sample_rate
|
|
|
|
self.voc_res_path = os.path.dirname(os.path.abspath(self.voc_model))
|
|
|
|
|
|
|
|
assert (
|
|
|
|
self.voc_sample_rate == self.am_sample_rate
|
|
|
|
), "The sample rate of AM and Vocoder model are different, please check model."
|
|
|
|
|
|
|
|
# Init body.
|
|
|
|
with open(self.phones_dict, "r") as f:
|
|
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
|
|
vocab_size = len(phn_id)
|
|
|
|
logger.info("vocab_size: {}".format(vocab_size))
|
|
|
|
|
|
|
|
tone_size = None
|
|
|
|
if self.tones_dict:
|
|
|
|
with open(self.tones_dict, "r") as f:
|
|
|
|
tone_id = [line.strip().split() for line in f.readlines()]
|
|
|
|
tone_size = len(tone_id)
|
|
|
|
logger.info("tone_size: {}".format(tone_size))
|
|
|
|
|
|
|
|
spk_num = None
|
|
|
|
if self.speaker_dict:
|
|
|
|
with open(self.speaker_dict, 'rt') as f:
|
|
|
|
spk_id = [line.strip().split() for line in f.readlines()]
|
|
|
|
spk_num = len(spk_id)
|
|
|
|
logger.info("spk_num: {}".format(spk_num))
|
|
|
|
|
|
|
|
# frontend
|
|
|
|
if lang == 'zh':
|
|
|
|
self.frontend = Frontend(
|
|
|
|
phone_vocab_path=self.phones_dict,
|
|
|
|
tone_vocab_path=self.tones_dict)
|
|
|
|
|
|
|
|
elif lang == 'en':
|
|
|
|
self.frontend = English(phone_vocab_path=self.phones_dict)
|
|
|
|
logger.info("frontend done!")
|
|
|
|
|
|
|
|
# Create am predictor
|
|
|
|
self.am_predictor_conf = am_predictor_conf
|
|
|
|
self.am_predictor = init_predictor(
|
|
|
|
model_file=self.am_model,
|
|
|
|
params_file=self.am_params,
|
|
|
|
predictor_conf=self.am_predictor_conf)
|
|
|
|
logger.info("Create AM predictor successfully.")
|
|
|
|
|
|
|
|
# Create voc predictor
|
|
|
|
self.voc_predictor_conf = voc_predictor_conf
|
|
|
|
self.voc_predictor = init_predictor(
|
|
|
|
model_file=self.voc_model,
|
|
|
|
params_file=self.voc_params,
|
|
|
|
predictor_conf=self.voc_predictor_conf)
|
|
|
|
logger.info("Create Vocoder predictor successfully.")
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
def infer(self,
|
|
|
|
text: str,
|
|
|
|
lang: str='zh',
|
|
|
|
am: str='fastspeech2_csmsc',
|
|
|
|
spk_id: int=0):
|
|
|
|
"""
|
|
|
|
Model inference and result stored in self.output.
|
|
|
|
"""
|
|
|
|
am_name = am[:am.rindex('_')]
|
|
|
|
am_dataset = am[am.rindex('_') + 1:]
|
|
|
|
get_tone_ids = False
|
|
|
|
merge_sentences = False
|
|
|
|
frontend_st = time.time()
|
|
|
|
if am_name == 'speedyspeech':
|
|
|
|
get_tone_ids = True
|
|
|
|
if lang == 'zh':
|
|
|
|
input_ids = self.frontend.get_input_ids(
|
|
|
|
text,
|
|
|
|
merge_sentences=merge_sentences,
|
|
|
|
get_tone_ids=get_tone_ids)
|
|
|
|
phone_ids = input_ids["phone_ids"]
|
|
|
|
if get_tone_ids:
|
|
|
|
tone_ids = input_ids["tone_ids"]
|
|
|
|
elif lang == 'en':
|
|
|
|
input_ids = self.frontend.get_input_ids(
|
|
|
|
text, merge_sentences=merge_sentences)
|
|
|
|
phone_ids = input_ids["phone_ids"]
|
|
|
|
else:
|
|
|
|
logger.error("lang should in {'zh', 'en'}!")
|
|
|
|
self.frontend_time = time.time() - frontend_st
|
|
|
|
|
|
|
|
self.am_time = 0
|
|
|
|
self.voc_time = 0
|
|
|
|
flags = 0
|
|
|
|
for i in range(len(phone_ids)):
|
|
|
|
am_st = time.time()
|
|
|
|
part_phone_ids = phone_ids[i]
|
|
|
|
# am
|
|
|
|
if am_name == 'speedyspeech':
|
|
|
|
part_tone_ids = tone_ids[i]
|
|
|
|
am_result = run_model(
|
|
|
|
self.am_predictor,
|
|
|
|
[part_phone_ids.numpy(), part_tone_ids.numpy()])
|
|
|
|
mel = am_result[0]
|
|
|
|
|
|
|
|
# fastspeech2
|
|
|
|
else:
|
|
|
|
# multi speaker do not have static model
|
|
|
|
if am_dataset in {"aishell3", "vctk"}:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
am_result = run_model(self.am_predictor,
|
|
|
|
[part_phone_ids.numpy()])
|
|
|
|
mel = am_result[0]
|
|
|
|
self.am_time += (time.time() - am_st)
|
|
|
|
|
|
|
|
# voc
|
|
|
|
voc_st = time.time()
|
|
|
|
voc_result = run_model(self.voc_predictor, [mel])
|
|
|
|
wav = voc_result[0]
|
|
|
|
wav = paddle.to_tensor(wav)
|
|
|
|
|
|
|
|
if flags == 0:
|
|
|
|
wav_all = wav
|
|
|
|
flags = 1
|
|
|
|
else:
|
|
|
|
wav_all = paddle.concat([wav_all, wav])
|
|
|
|
self.voc_time += (time.time() - voc_st)
|
|
|
|
self._outputs['wav'] = wav_all
|
|
|
|
|
|
|
|
|
|
|
|
class TTSEngine(BaseEngine):
|
|
|
|
"""TTS server engine
|
|
|
|
|
|
|
|
Args:
|
|
|
|
metaclass: Defaults to Singleton.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
"""Initialize TTS server engine
|
|
|
|
"""
|
|
|
|
super(TTSEngine, self).__init__()
|
|
|
|
|
|
|
|
def init(self, config: dict) -> bool:
|
|
|
|
self.executor = TTSServerExecutor()
|
|
|
|
|
|
|
|
self.config = config
|
|
|
|
self.executor._init_from_path(
|
|
|
|
am=self.config.am,
|
|
|
|
am_model=self.config.am_model,
|
|
|
|
am_params=self.config.am_params,
|
|
|
|
am_sample_rate=self.config.am_sample_rate,
|
|
|
|
phones_dict=self.config.phones_dict,
|
|
|
|
tones_dict=self.config.tones_dict,
|
|
|
|
speaker_dict=self.config.speaker_dict,
|
|
|
|
voc=self.config.voc,
|
|
|
|
voc_model=self.config.voc_model,
|
|
|
|
voc_params=self.config.voc_params,
|
|
|
|
voc_sample_rate=self.config.voc_sample_rate,
|
|
|
|
lang=self.config.lang,
|
|
|
|
am_predictor_conf=self.config.am_predictor_conf,
|
|
|
|
voc_predictor_conf=self.config.voc_predictor_conf, )
|
|
|
|
|
|
|
|
logger.info("Initialize TTS server engine successfully.")
|
|
|
|
return True
|
|
|
|
|
|
|
|
def postprocess(self,
|
|
|
|
wav,
|
|
|
|
original_fs: int,
|
|
|
|
target_fs: int=0,
|
|
|
|
volume: float=1.0,
|
|
|
|
speed: float=1.0,
|
|
|
|
audio_path: str=None):
|
|
|
|
"""Post-processing operations, including speech, volume, sample rate, save audio file
|
|
|
|
|
|
|
|
Args:
|
|
|
|
wav (numpy(float)): Synthesized audio sample points
|
|
|
|
original_fs (int): original audio sample rate
|
|
|
|
target_fs (int): target audio sample rate
|
|
|
|
volume (float): target volume
|
|
|
|
speed (float): target speed
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ServerBaseException: Throws an exception if the change speed unsuccessfully.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
target_fs: target sample rate for synthesized audio.
|
|
|
|
wav_base64: The base64 format of the synthesized audio.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# transform sample_rate
|
|
|
|
if target_fs == 0 or target_fs > original_fs:
|
|
|
|
target_fs = original_fs
|
|
|
|
wav_tar_fs = wav
|
|
|
|
logger.info(
|
|
|
|
"The sample rate of synthesized audio is the same as model, which is {}Hz".
|
|
|
|
format(original_fs))
|
|
|
|
else:
|
|
|
|
wav_tar_fs = librosa.resample(
|
|
|
|
np.squeeze(wav), original_fs, target_fs)
|
|
|
|
logger.info(
|
|
|
|
"The sample rate of model is {}Hz and the target sample rate is {}Hz. Converting the sample rate of the synthesized audio successfully.".
|
|
|
|
format(original_fs, target_fs))
|
|
|
|
# transform volume
|
|
|
|
wav_vol = wav_tar_fs * volume
|
|
|
|
logger.info("Transform the volume of the audio successfully.")
|
|
|
|
|
|
|
|
# transform speed
|
|
|
|
try: # windows not support soxbindings
|
|
|
|
wav_speed = change_speed(wav_vol, speed, target_fs)
|
|
|
|
logger.info("Transform the speed of the audio successfully.")
|
|
|
|
except ServerBaseException:
|
|
|
|
raise ServerBaseException(
|
|
|
|
ErrorCode.SERVER_INTERNAL_ERR,
|
|
|
|
"Failed to transform speed. Can not install soxbindings on your system. \
|
|
|
|
You need to set speed value 1.0.")
|
|
|
|
except BaseException:
|
|
|
|
logger.error("Failed to transform speed.")
|
|
|
|
|
|
|
|
# wav to base64
|
|
|
|
buf = io.BytesIO()
|
|
|
|
wavfile.write(buf, target_fs, wav_speed)
|
|
|
|
base64_bytes = base64.b64encode(buf.read())
|
|
|
|
wav_base64 = base64_bytes.decode('utf-8')
|
|
|
|
logger.info("Audio to string successfully.")
|
|
|
|
|
|
|
|
# save audio
|
|
|
|
if audio_path is not None:
|
|
|
|
if audio_path.endswith(".wav"):
|
|
|
|
sf.write(audio_path, wav_speed, target_fs)
|
|
|
|
elif audio_path.endswith(".pcm"):
|
|
|
|
wav_norm = wav_speed * (32767 / max(0.001,
|
|
|
|
np.max(np.abs(wav_speed))))
|
|
|
|
with open(audio_path, "wb") as f:
|
|
|
|
f.write(wav_norm.astype(np.int16))
|
|
|
|
logger.info("Save audio to {} successfully.".format(audio_path))
|
|
|
|
else:
|
|
|
|
logger.info("There is no need to save audio.")
|
|
|
|
|
|
|
|
return target_fs, wav_base64
|
|
|
|
|
|
|
|
def run(self,
|
|
|
|
sentence: str,
|
|
|
|
spk_id: int=0,
|
|
|
|
speed: float=1.0,
|
|
|
|
volume: float=1.0,
|
|
|
|
sample_rate: int=0,
|
|
|
|
save_path: str=None):
|
|
|
|
"""get the result of the server response
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sentence (str): sentence to be synthesized
|
|
|
|
spk_id (int, optional): speaker id. Defaults to 0.
|
|
|
|
speed (float, optional): audio speed, 0 < speed <=3.0. Defaults to 1.0.
|
|
|
|
volume (float, optional): The volume relative to the audio synthesized by the model,
|
|
|
|
0 < volume <=3.0. Defaults to 1.0.
|
|
|
|
sample_rate (int, optional): Set the sample rate of the synthesized audio.
|
|
|
|
0 represents the sample rate for model synthesis. Defaults to 0.
|
|
|
|
save_path (str, optional): The save path of the synthesized audio. Defaults to None.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ServerBaseException: Throws an exception if tts inference unsuccessfully.
|
|
|
|
ServerBaseException: Throws an exception if postprocess unsuccessfully.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
lang: model language
|
|
|
|
target_sample_rate: target sample rate for synthesized audio.
|
|
|
|
wav_base64: The base64 format of the synthesized audio.
|
|
|
|
"""
|
|
|
|
|
|
|
|
lang = self.config.lang
|
|
|
|
|
|
|
|
try:
|
|
|
|
infer_st = time.time()
|
|
|
|
self.executor.infer(
|
|
|
|
text=sentence, lang=lang, am=self.config.am, spk_id=spk_id)
|
|
|
|
infer_et = time.time()
|
|
|
|
infer_time = infer_et - infer_st
|
|
|
|
|
|
|
|
except ServerBaseException:
|
|
|
|
raise ServerBaseException(ErrorCode.SERVER_INTERNAL_ERR,
|
|
|
|
"tts infer failed.")
|
|
|
|
except BaseException:
|
|
|
|
logger.error("tts infer failed.")
|
|
|
|
|
|
|
|
try:
|
|
|
|
postprocess_st = time.time()
|
|
|
|
target_sample_rate, wav_base64 = self.postprocess(
|
|
|
|
wav=self.executor._outputs['wav'].numpy(),
|
|
|
|
original_fs=self.executor.am_sample_rate,
|
|
|
|
target_fs=sample_rate,
|
|
|
|
volume=volume,
|
|
|
|
speed=speed,
|
|
|
|
audio_path=save_path)
|
|
|
|
postprocess_et = time.time()
|
|
|
|
postprocess_time = postprocess_et - postprocess_st
|
|
|
|
duration = len(self.executor._outputs['wav']
|
|
|
|
.numpy()) / self.executor.am_sample_rate
|
|
|
|
rtf = infer_time / duration
|
|
|
|
|
|
|
|
except ServerBaseException:
|
|
|
|
raise ServerBaseException(ErrorCode.SERVER_INTERNAL_ERR,
|
|
|
|
"tts postprocess failed.")
|
|
|
|
except BaseException:
|
|
|
|
logger.error("tts postprocess failed.")
|
|
|
|
|
|
|
|
logger.info("AM model: {}".format(self.config.am))
|
|
|
|
logger.info("Vocoder model: {}".format(self.config.voc))
|
|
|
|
logger.info("Language: {}".format(lang))
|
|
|
|
logger.info("tts engine type: paddle inference")
|
|
|
|
|
|
|
|
logger.info("audio duration: {}".format(duration))
|
|
|
|
logger.info(
|
|
|
|
"frontend inference time: {}".format(self.executor.frontend_time))
|
|
|
|
logger.info("AM inference time: {}".format(self.executor.am_time))
|
|
|
|
logger.info("Vocoder inference time: {}".format(self.executor.voc_time))
|
|
|
|
logger.info("total inference time: {}".format(infer_time))
|
|
|
|
logger.info(
|
|
|
|
"postprocess (change speed, volume, target sample rate) time: {}".
|
|
|
|
format(postprocess_time))
|
|
|
|
logger.info("total generate audio time: {}".format(infer_time +
|
|
|
|
postprocess_time))
|
|
|
|
logger.info("RTF: {}".format(rtf))
|
|
|
|
|
|
|
|
return lang, target_sample_rate, duration, wav_base64
|