You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/speechx/examples/ds2_ol/onnx/local/onnx_prune_model.py

129 lines
4.1 KiB

#!/usr/bin/env python3 -W ignore::DeprecationWarning
3 years ago
# prune model by output names
import argparse
import copy
import sys
import onnx
3 years ago
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model',
required=True,
help='Path of directory saved the input model.')
parser.add_argument(
'--output_names',
required=True,
nargs='+',
help='The outputs of pruned model.')
parser.add_argument(
'--save_file', required=True, help='Path to save the new onnx model.')
return parser.parse_args()
if __name__ == '__main__':
args = parse_arguments()
if len(set(args.output_names)) < len(args.output_names):
print(
"[ERROR] There's dumplicate name in --output_names, which is not allowed."
)
sys.exit(-1)
model = onnx.load(args.model)
# collect all node outputs and graph output
output_tensor_names = set()
for node in model.graph.node:
for out in node.output:
# may contain model output
output_tensor_names.add(out)
# for out in model.graph.output:
# output_tensor_names.add(out.name)
for output_name in args.output_names:
if output_name not in output_tensor_names:
print(
"[ERROR] Cannot find output tensor name '{}' in onnx model graph.".
format(output_name))
sys.exit(-1)
output_node_indices = set() # has output names
output_to_node = dict() # all node outputs
for i, node in enumerate(model.graph.node):
for out in node.output:
output_to_node[out] = i
if out in args.output_names:
output_node_indices.add(i)
# from outputs find all the ancestors
reserved_node_indices = copy.deepcopy(
output_node_indices) # nodes need to keep
reserved_inputs = set() # model input to keep
new_output_node_indices = copy.deepcopy(output_node_indices)
while True and len(new_output_node_indices) > 0:
output_node_indices = copy.deepcopy(new_output_node_indices)
new_output_node_indices = set()
for out_node_idx in output_node_indices:
# backtrace to parenet
for ipt in model.graph.node[out_node_idx].input:
if ipt in output_to_node:
reserved_node_indices.add(output_to_node[ipt])
new_output_node_indices.add(output_to_node[ipt])
else:
reserved_inputs.add(ipt)
num_inputs = len(model.graph.input)
num_outputs = len(model.graph.output)
num_nodes = len(model.graph.node)
print(
f"old graph has {num_inputs} inputs, {num_outputs} outpus, {num_nodes} nodes"
)
print(f"{len(reserved_node_indices)} node to keep.")
# del node not to keep
for idx in range(num_nodes - 1, -1, -1):
if idx not in reserved_node_indices:
del model.graph.node[idx]
# del graph input not to keep
for idx in range(num_inputs - 1, -1, -1):
if model.graph.input[idx].name not in reserved_inputs:
del model.graph.input[idx]
# del old graph outputs
for i in range(num_outputs):
del model.graph.output[0]
# new graph output as user input
for out in args.output_names:
model.graph.output.extend([onnx.ValueInfoProto(name=out)])
# infer shape
try:
from onnx_infer_shape import SymbolicShapeInference
model = SymbolicShapeInference.infer_shapes(
model,
int_max=2**31 - 1,
auto_merge=True,
guess_output_rank=False,
verbose=1)
except Exception as e:
print(f"skip infer shape step: {e}")
# check onnx model
onnx.checker.check_model(model)
# save onnx model
onnx.save(model, args.save_file)
print("[Finished] The new model saved in {}.".format(args.save_file))
print("[DEBUG INFO] The inputs of new model: {}".format(
[x.name for x in model.graph.input]))
print("[DEBUG INFO] The outputs of new model: {}".format(
[x.name for x in model.graph.output]))