You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
5.2 KiB
137 lines
5.2 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import collections
|
||
|
import os
|
||
|
import random
|
||
|
from typing import List
|
||
|
from typing import Tuple
|
||
|
|
||
|
from ..utils.download import download_and_decompress
|
||
|
from ..utils.env import DATA_HOME
|
||
|
from .dataset import AudioClassificationDataset
|
||
|
|
||
|
__all__ = ['RAVDESS']
|
||
|
|
||
|
|
||
|
class RAVDESS(AudioClassificationDataset):
|
||
|
"""
|
||
|
The RAVDESS contains 24 professional actors (12 female, 12 male), vocalizing two
|
||
|
lexically-matched statements in a neutral North American accent. Speech emotions
|
||
|
includes calm, happy, sad, angry, fearful, surprise, and disgust expressions.
|
||
|
Each expression is produced at two levels of emotional intensity (normal, strong),
|
||
|
with an additional neutral expression.
|
||
|
|
||
|
Reference:
|
||
|
The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS):
|
||
|
A dynamic, multimodal set of facial and vocal expressions in North American English
|
||
|
https://doi.org/10.1371/journal.pone.0196391
|
||
|
"""
|
||
|
|
||
|
archieves = [
|
||
|
{
|
||
|
'url':
|
||
|
'https://zenodo.org/record/1188976/files/Audio_Song_Actors_01-24.zip',
|
||
|
'md5':
|
||
|
'5411230427d67a21e18aa4d466e6d1b9',
|
||
|
},
|
||
|
{
|
||
|
'url':
|
||
|
'https://zenodo.org/record/1188976/files/Audio_Speech_Actors_01-24.zip',
|
||
|
'md5':
|
||
|
'bc696df654c87fed845eb13823edef8a',
|
||
|
},
|
||
|
]
|
||
|
label_list = [
|
||
|
'neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust',
|
||
|
'surprised'
|
||
|
]
|
||
|
meta_info = collections.namedtuple(
|
||
|
'META_INFO', ('modality', 'vocal_channel', 'emotion',
|
||
|
'emotion_intensity', 'statement', 'repitition', 'actor'))
|
||
|
speech_path = os.path.join(DATA_HOME, 'Audio_Speech_Actors_01-24')
|
||
|
song_path = os.path.join(DATA_HOME, 'Audio_Song_Actors_01-24')
|
||
|
|
||
|
def __init__(self,
|
||
|
mode='train',
|
||
|
seed=0,
|
||
|
n_folds=5,
|
||
|
split=1,
|
||
|
feat_type='raw',
|
||
|
**kwargs):
|
||
|
"""
|
||
|
Ags:
|
||
|
mode (:obj:`str`, `optional`, defaults to `train`):
|
||
|
It identifies the dataset mode (train or dev).
|
||
|
seed (:obj:`int`, `optional`, defaults to 0):
|
||
|
Set the random seed to shuffle samples.
|
||
|
n_folds (:obj:`int`, `optional`, defaults to 5):
|
||
|
Split the dataset into n folds. 1 fold for dev dataset and n-1 for train dataset.
|
||
|
split (:obj:`int`, `optional`, defaults to 1):
|
||
|
It specify the fold of dev dataset.
|
||
|
feat_type (:obj:`str`, `optional`, defaults to `raw`):
|
||
|
It identifies the feature type that user wants to extrace of an audio file.
|
||
|
"""
|
||
|
assert split <= n_folds, f'The selected split should not be larger than n_fold, but got {split} > {n_folds}'
|
||
|
files, labels = self._get_data(mode, seed, n_folds, split)
|
||
|
super(RAVDESS, self).__init__(
|
||
|
files=files, labels=labels, feat_type=feat_type, **kwargs)
|
||
|
|
||
|
def _get_meta_info(self, files) -> List[collections.namedtuple]:
|
||
|
ret = []
|
||
|
for file in files:
|
||
|
basename_without_extend = os.path.basename(file)[:-4]
|
||
|
ret.append(self.meta_info(*basename_without_extend.split('-')))
|
||
|
return ret
|
||
|
|
||
|
def _get_data(self, mode, seed, n_folds,
|
||
|
split) -> Tuple[List[str], List[int]]:
|
||
|
if not os.path.isdir(self.speech_path) and not os.path.isdir(
|
||
|
self.song_path):
|
||
|
download_and_decompress(self.archieves, DATA_HOME)
|
||
|
|
||
|
wav_files = []
|
||
|
for root, _, files in os.walk(self.speech_path):
|
||
|
for file in files:
|
||
|
if file.endswith('.wav'):
|
||
|
wav_files.append(os.path.join(root, file))
|
||
|
|
||
|
for root, _, files in os.walk(self.song_path):
|
||
|
for file in files:
|
||
|
if file.endswith('.wav'):
|
||
|
wav_files.append(os.path.join(root, file))
|
||
|
|
||
|
random.seed(seed) # shuffle samples to split data
|
||
|
random.shuffle(
|
||
|
wav_files
|
||
|
) # make sure using the same seed to create train and dev dataset
|
||
|
meta_info = self._get_meta_info(wav_files)
|
||
|
|
||
|
files = []
|
||
|
labels = []
|
||
|
n_samples_per_fold = len(meta_info) // n_folds
|
||
|
for idx, sample in enumerate(meta_info):
|
||
|
_, _, emotion, _, _, _, _ = sample
|
||
|
target = int(emotion) - 1
|
||
|
fold = idx // n_samples_per_fold + 1
|
||
|
|
||
|
if mode == 'train' and int(fold) != split:
|
||
|
files.append(wav_files[idx])
|
||
|
labels.append(target)
|
||
|
|
||
|
if mode != 'train' and int(fold) == split:
|
||
|
files.append(wav_files[idx])
|
||
|
labels.append(target)
|
||
|
|
||
|
return files, labels
|