You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
7.4 KiB
200 lines
7.4 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import codecs
|
||
|
import collections
|
||
|
import json
|
||
|
import os
|
||
|
from typing import Dict
|
||
|
|
||
|
from paddle.io import Dataset
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from ..backends import load as load_audio
|
||
|
from ..utils.download import download_and_decompress
|
||
|
from ..utils.env import DATA_HOME
|
||
|
from ..utils.log import logger
|
||
|
from .dataset import feat_funcs
|
||
|
|
||
|
__all__ = ['LIBRISPEECH']
|
||
|
|
||
|
|
||
|
class LIBRISPEECH(Dataset):
|
||
|
"""
|
||
|
LibriSpeech is a corpus of approximately 1000 hours of 16kHz read English speech,
|
||
|
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is
|
||
|
derived from read audiobooks from the LibriVox project, and has been carefully
|
||
|
segmented and aligned.
|
||
|
|
||
|
Reference:
|
||
|
LIBRISPEECH: AN ASR CORPUS BASED ON PUBLIC DOMAIN AUDIO BOOKS
|
||
|
http://www.danielpovey.com/files/2015_icassp_librispeech.pdf
|
||
|
https://arxiv.org/abs/1709.05522
|
||
|
"""
|
||
|
|
||
|
source_url = 'http://www.openslr.org/resources/12/'
|
||
|
archieves = [
|
||
|
{
|
||
|
'url': source_url + 'train-clean-100.tar.gz',
|
||
|
'md5': '2a93770f6d5c6c964bc36631d331a522',
|
||
|
},
|
||
|
{
|
||
|
'url': source_url + 'train-clean-360.tar.gz',
|
||
|
'md5': 'c0e676e450a7ff2f54aeade5171606fa',
|
||
|
},
|
||
|
{
|
||
|
'url': source_url + 'train-other-500.tar.gz',
|
||
|
'md5': 'd1a0fd59409feb2c614ce4d30c387708',
|
||
|
},
|
||
|
{
|
||
|
'url': source_url + 'dev-clean.tar.gz',
|
||
|
'md5': '42e2234ba48799c1f50f24a7926300a1',
|
||
|
},
|
||
|
{
|
||
|
'url': source_url + 'dev-other.tar.gz',
|
||
|
'md5': 'c8d0bcc9cca99d4f8b62fcc847357931',
|
||
|
},
|
||
|
{
|
||
|
'url': source_url + 'test-clean.tar.gz',
|
||
|
'md5': '32fa31d27d2e1cad72775fee3f4849a9',
|
||
|
},
|
||
|
{
|
||
|
'url': source_url + 'test-other.tar.gz',
|
||
|
'md5': 'fb5a50374b501bb3bac4815ee91d3135',
|
||
|
},
|
||
|
]
|
||
|
speaker_meta = os.path.join('LibriSpeech', 'SPEAKERS.TXT')
|
||
|
utt_info = collections.namedtuple('META_INFO', (
|
||
|
'file_path', 'utt_id', 'text', 'spk_id', 'spk_gender'))
|
||
|
audio_path = 'LibriSpeech'
|
||
|
manifest_path = os.path.join('LibriSpeech', 'manifest')
|
||
|
subset = [
|
||
|
'train-clean-100', 'train-clean-360', 'train-clean-500', 'dev-clean',
|
||
|
'dev-other', 'test-clean', 'test-other'
|
||
|
]
|
||
|
|
||
|
def __init__(self,
|
||
|
subset: str='train-clean-100',
|
||
|
feat_type: str='raw',
|
||
|
**kwargs):
|
||
|
assert subset in self.subset, 'Dataset subset must be one in {}, but got {}'.format(
|
||
|
self.subset, subset)
|
||
|
self.subset = subset
|
||
|
self.feat_type = feat_type
|
||
|
self.feat_config = kwargs
|
||
|
self._data = self._get_data()
|
||
|
super(LIBRISPEECH, self).__init__()
|
||
|
|
||
|
def _get_speaker_info(self) -> Dict[str, str]:
|
||
|
ret = {}
|
||
|
with open(os.path.join(DATA_HOME, self.speaker_meta), 'r') as rf:
|
||
|
for line in rf.readlines():
|
||
|
if ';' in line: # Skip dataset abstract
|
||
|
continue
|
||
|
spk_id, gender = map(str.strip,
|
||
|
line.split('|')[:2]) # spk_id, gender
|
||
|
ret.update({spk_id: gender})
|
||
|
return ret
|
||
|
|
||
|
def _get_text_info(self, trans_file) -> Dict[str, str]:
|
||
|
ret = {}
|
||
|
with open(trans_file, 'r') as rf:
|
||
|
for line in rf.readlines():
|
||
|
utt_id, text = map(str.strip, line.split(' ',
|
||
|
1)) # utt_id, text
|
||
|
ret.update({utt_id: text})
|
||
|
return ret
|
||
|
|
||
|
def _get_data(self):
|
||
|
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
|
||
|
not os.path.isfile(os.path.join(DATA_HOME, self.speaker_meta)):
|
||
|
download_and_decompress(self.archieves, DATA_HOME,
|
||
|
len(self.archieves))
|
||
|
|
||
|
# Speaker info
|
||
|
speaker_info = self._get_speaker_info()
|
||
|
|
||
|
# Text info
|
||
|
text_info = {}
|
||
|
for root, _, files in os.walk(
|
||
|
os.path.join(DATA_HOME, self.audio_path, self.subset)):
|
||
|
for file in files:
|
||
|
if file.endswith('.trans.txt'):
|
||
|
text_info.update(
|
||
|
self._get_text_info(os.path.join(root, file)))
|
||
|
|
||
|
data = []
|
||
|
for root, _, files in os.walk(
|
||
|
os.path.join(DATA_HOME, self.audio_path, self.subset)):
|
||
|
for file in files:
|
||
|
if file.endswith('.flac'):
|
||
|
utt_id = os.path.splitext(file)[0]
|
||
|
spk_id = utt_id.split('-')[0]
|
||
|
if utt_id not in text_info \
|
||
|
or spk_id not in speaker_info : # Skip samples with incomplete data
|
||
|
continue
|
||
|
file_path = os.path.join(root, file)
|
||
|
text = text_info[utt_id]
|
||
|
spk_gender = speaker_info[spk_id]
|
||
|
data.append(
|
||
|
self.utt_info(file_path, utt_id, text, spk_id,
|
||
|
spk_gender))
|
||
|
|
||
|
return data
|
||
|
|
||
|
def _convert_to_record(self, idx: int):
|
||
|
sample = self._data[idx]
|
||
|
|
||
|
record = {}
|
||
|
# To show all fields in a namedtuple: `type(sample)._fields`
|
||
|
for field in type(sample)._fields:
|
||
|
record[field] = getattr(sample, field)
|
||
|
|
||
|
waveform, sr = load_audio(
|
||
|
sample[0]) # The first element of sample is file path
|
||
|
feat_func = feat_funcs[self.feat_type]
|
||
|
feat = feat_func(
|
||
|
waveform, sample_rate=sr,
|
||
|
**self.feat_config) if feat_func else waveform
|
||
|
record.update({'feat': feat, 'duration': len(waveform) / sr})
|
||
|
return record
|
||
|
|
||
|
def create_manifest(self, prefix='manifest'):
|
||
|
if not os.path.isdir(os.path.join(DATA_HOME, self.manifest_path)):
|
||
|
os.makedirs(os.path.join(DATA_HOME, self.manifest_path))
|
||
|
|
||
|
manifest_file = os.path.join(DATA_HOME, self.manifest_path,
|
||
|
f'{prefix}.{self.subset}')
|
||
|
with codecs.open(manifest_file, 'w', 'utf-8') as f:
|
||
|
for idx in tqdm(range(len(self))):
|
||
|
record = self._convert_to_record(idx)
|
||
|
record_line = json.dumps(
|
||
|
{
|
||
|
'utt': record['utt_id'],
|
||
|
'feat': record['file_path'],
|
||
|
'feat_shape': (record['duration'], ),
|
||
|
'text': record['text'],
|
||
|
'spk': record['spk_id'],
|
||
|
'gender': record['spk_gender'],
|
||
|
},
|
||
|
ensure_ascii=False)
|
||
|
f.write(record_line + '\n')
|
||
|
logger.info(f'Manifest file {manifest_file} created.')
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
record = self._convert_to_record(idx)
|
||
|
return tuple(record.values())
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self._data)
|