You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/decoder.py

190 lines
7.1 KiB

"""
CTC-like decoder utilitis.
"""
from itertools import groupby
import numpy as np
import copy
import kenlm
import os
def ctc_best_path_decode(probs_seq, vocabulary):
"""
Best path decoding, also called argmax decoding or greedy decoding.
Path consisting of the most probable tokens are further post-processed to
remove consecutive repetitions and all blanks.
:param probs_seq: 2-D list of probabilities over the vocabulary for each
character. Each element is a list of float probabilities
for one character.
:type probs_seq: list
:param vocabulary: Vocabulary list.
:type vocabulary: list
:return: Decoding result string.
:rtype: baseline
"""
# dimension verification
for probs in probs_seq:
if not len(probs) == len(vocabulary) + 1:
raise ValueError("probs_seq dimension mismatchedd with vocabulary")
# argmax to get the best index for each time step
max_index_list = list(np.array(probs_seq).argmax(axis=1))
# remove consecutive duplicate indexes
index_list = [index_group[0] for index_group in groupby(max_index_list)]
# remove blank indexes
blank_index = len(vocabulary)
index_list = [index for index in index_list if index != blank_index]
# convert index list to string
return ''.join([vocabulary[index] for index in index_list])
class Scorer(object):
"""
External defined scorer to evaluate a sentence in beam search
decoding, consisting of language model and word count.
:param alpha: Parameter associated with language model.
:type alpha: float
:param beta: Parameter associated with word count.
:type beta: float
:model_path: Path to load language model.
:type model_path: basestring
"""
def __init__(self, alpha, beta, model_path):
self._alpha = alpha
self._beta = beta
if not os.path.isfile(model_path):
raise IOError("Invaid language model path: %s" % model_path)
self._language_model = kenlm.LanguageModel(model_path)
# n-gram language model scoring
def language_model_score(self, sentence):
#log prob of last word
log_cond_prob = list(
self._language_model.full_scores(sentence, eos=False))[-1][0]
return np.power(10, log_cond_prob)
# word insertion term
def word_count(self, sentence):
words = sentence.strip().split(' ')
return len(words)
# execute evaluation
def evaluate(self, sentence):
lm = self.language_model_score(sentence)
8 years ago
word_cnt = self.word_count(sentence)
score = np.power(lm, self._alpha) \
8 years ago
* np.power(word_cnt, self._beta)
return score
def ctc_beam_search_decoder(probs_seq,
beam_size,
vocabulary,
ext_scoring_func=None,
blank_id=0):
'''
Beam search decoder for CTC-trained network, using beam search with width
beam_size to find many paths to one label, return beam_size labels in
the order of probabilities. The implementation is based on Prefix Beam
Search(https://arxiv.org/abs/1408.2873), and the unclear part is
redesigned, need to be verified.
:param probs_seq: 2-D list with length num_time_steps, each element
is a list of normalized probabilities over vocabulary
and blank for one time step.
:type probs_seq: 2-D list
:param beam_size: Width for beam search.
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param ext_scoring_func: External defined scoring function for
partially decoded sentence, e.g. word count
and language model.
:type external_scoring_function: function
:param blank_id: id of blank, default 0.
:type blank_id: int
:return: Decoding log probability and result string.
:rtype: list
'''
8 years ago
# dimension check
for prob_list in probs_seq:
if not len(prob_list) == len(vocabulary) + 1:
raise ValueError("probs dimension mismatchedd with vocabulary")
num_time_steps = len(probs_seq)
8 years ago
# blank_id check
probs_dim = len(probs_seq[0])
if not blank_id < probs_dim:
raise ValueError("blank_id shouldn't be greater than probs dimension")
## initialize
# the set containing selected prefixes
prefix_set_prev = {'\t': 1.0}
probs_b_prev, probs_nb_prev = {'\t': 1.0}, {'\t': 0.0}
## extend prefix in loop
for time_step in range(num_time_steps):
# the set containing candidate prefixes
prefix_set_next = {}
probs_b_cur, probs_nb_cur = {}, {}
for l in prefix_set_prev:
prob = probs_seq[time_step]
if not prefix_set_next.has_key(l):
probs_b_cur[l], probs_nb_cur[l] = 0.0, 0.0
# extend prefix by travering vocabulary
for c in range(0, probs_dim):
if c == blank_id:
probs_b_cur[l] += prob[c] * (
probs_b_prev[l] + probs_nb_prev[l])
else:
last_char = l[-1]
new_char = vocabulary[c]
l_plus = l + new_char
if not prefix_set_next.has_key(l_plus):
probs_b_cur[l_plus], probs_nb_cur[l_plus] = 0.0, 0.0
if new_char == last_char:
probs_nb_cur[l_plus] += prob[c] * probs_b_prev[l]
probs_nb_cur[l] += prob[c] * probs_nb_prev[l]
elif new_char == ' ':
if (ext_scoring_func is None) or (len(l) == 1):
score = 1.0
else:
prefix = l[1:]
score = ext_scoring_func(prefix)
probs_nb_cur[l_plus] += score * prob[c] * (
probs_b_prev[l] + probs_nb_prev[l])
else:
probs_nb_cur[l_plus] += prob[c] * (
probs_b_prev[l] + probs_nb_prev[l])
# add l_plus into prefix_set_next
prefix_set_next[l_plus] = probs_nb_cur[
l_plus] + probs_b_cur[l_plus]
# add l into prefix_set_next
prefix_set_next[l] = probs_b_cur[l] + probs_nb_cur[l]
# update probs
probs_b_prev, probs_nb_prev = probs_b_cur, probs_nb_cur
## store top beam_size prefixes
prefix_set_prev = sorted(
prefix_set_next.iteritems(), key=lambda asd: asd[1], reverse=True)
if beam_size < len(prefix_set_prev):
prefix_set_prev = prefix_set_prev[:beam_size]
prefix_set_prev = dict(prefix_set_prev)
beam_result = []
for (seq, prob) in prefix_set_prev.items():
if prob > 0.0:
result = seq[1:]
log_prob = np.log(prob)
beam_result.append([log_prob, result])
## output top beam_size decoding results
beam_result = sorted(beam_result, key=lambda asd: asd[0], reverse=True)
return beam_result