|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
"""MelGAN Modules."""
|
|
|
|
from typing import Any
|
|
|
|
from typing import Dict
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
from paddlespeech.t2s.modules.activation import get_activation
|
|
|
|
from paddlespeech.t2s.modules.causal_conv import CausalConv1D
|
|
|
|
from paddlespeech.t2s.modules.causal_conv import CausalConv1DTranspose
|
|
|
|
from paddlespeech.t2s.modules.nets_utils import initialize
|
|
|
|
from paddlespeech.t2s.modules.pqmf import PQMF
|
|
|
|
from paddlespeech.t2s.modules.residual_stack import ResidualStack
|
|
|
|
|
|
|
|
|
|
|
|
class MelGANGenerator(nn.Layer):
|
|
|
|
"""MelGAN generator module."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_channels: int=80,
|
|
|
|
out_channels: int=1,
|
|
|
|
kernel_size: int=7,
|
|
|
|
channels: int=512,
|
|
|
|
bias: bool=True,
|
|
|
|
upsample_scales: List[int]=[8, 8, 2, 2],
|
|
|
|
stack_kernel_size: int=3,
|
|
|
|
stacks: int=3,
|
|
|
|
nonlinear_activation: str="leakyrelu",
|
|
|
|
nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2},
|
|
|
|
pad: str="Pad1D",
|
|
|
|
pad_params: Dict[str, Any]={"mode": "reflect"},
|
|
|
|
use_final_nonlinear_activation: bool=True,
|
|
|
|
use_weight_norm: bool=True,
|
|
|
|
use_causal_conv: bool=False,
|
|
|
|
init_type: str="xavier_uniform", ):
|
|
|
|
"""Initialize MelGANGenerator module.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
in_channels : int
|
|
|
|
Number of input channels.
|
|
|
|
out_channels : int
|
|
|
|
Number of output channels,
|
|
|
|
the number of sub-band is out_channels in multi-band melgan.
|
|
|
|
kernel_size : int
|
|
|
|
Kernel size of initial and final conv layer.
|
|
|
|
channels : int
|
|
|
|
Initial number of channels for conv layer.
|
|
|
|
bias : bool
|
|
|
|
Whether to add bias parameter in convolution layers.
|
|
|
|
upsample_scales : List[int]
|
|
|
|
List of upsampling scales.
|
|
|
|
stack_kernel_size : int
|
|
|
|
Kernel size of dilated conv layers in residual stack.
|
|
|
|
stacks : int
|
|
|
|
Number of stacks in a single residual stack.
|
|
|
|
nonlinear_activation : Optional[str], optional
|
|
|
|
Non linear activation in upsample network, by default None
|
|
|
|
nonlinear_activation_params : Dict[str, Any], optional
|
|
|
|
Parameters passed to the linear activation in the upsample network,
|
|
|
|
by default {}
|
|
|
|
pad : str
|
|
|
|
Padding function module name before dilated convolution layer.
|
|
|
|
pad_params : dict
|
|
|
|
Hyperparameters for padding function.
|
|
|
|
use_final_nonlinear_activation : nn.Layer
|
|
|
|
Activation function for the final layer.
|
|
|
|
use_weight_norm : bool
|
|
|
|
Whether to use weight norm.
|
|
|
|
If set to true, it will be applied to all of the conv layers.
|
|
|
|
use_causal_conv : bool
|
|
|
|
Whether to use causal convolution.
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
# initialize parameters
|
|
|
|
initialize(self, init_type)
|
|
|
|
|
|
|
|
# for compatibility
|
|
|
|
if nonlinear_activation:
|
|
|
|
nonlinear_activation = nonlinear_activation.lower()
|
|
|
|
|
|
|
|
# check hyper parameters is valid
|
|
|
|
assert channels >= np.prod(upsample_scales)
|
|
|
|
assert channels % (2**len(upsample_scales)) == 0
|
|
|
|
if not use_causal_conv:
|
|
|
|
assert (kernel_size - 1
|
|
|
|
) % 2 == 0, "Not support even number kernel size."
|
|
|
|
|
|
|
|
layers = []
|
|
|
|
if not use_causal_conv:
|
|
|
|
layers += [
|
|
|
|
getattr(paddle.nn, pad)((kernel_size - 1) // 2, **pad_params),
|
|
|
|
nn.Conv1D(in_channels, channels, kernel_size, bias_attr=bias),
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
layers += [
|
|
|
|
CausalConv1D(
|
|
|
|
in_channels,
|
|
|
|
channels,
|
|
|
|
kernel_size,
|
|
|
|
bias=bias,
|
|
|
|
pad=pad,
|
|
|
|
pad_params=pad_params, ),
|
|
|
|
]
|
|
|
|
|
|
|
|
for i, upsample_scale in enumerate(upsample_scales):
|
|
|
|
# add upsampling layer
|
|
|
|
layers += [
|
|
|
|
get_activation(nonlinear_activation,
|
|
|
|
**nonlinear_activation_params)
|
|
|
|
]
|
|
|
|
if not use_causal_conv:
|
|
|
|
layers += [
|
|
|
|
nn.Conv1DTranspose(
|
|
|
|
channels // (2**i),
|
|
|
|
channels // (2**(i + 1)),
|
|
|
|
upsample_scale * 2,
|
|
|
|
stride=upsample_scale,
|
|
|
|
padding=upsample_scale // 2 + upsample_scale % 2,
|
|
|
|
output_padding=upsample_scale % 2,
|
|
|
|
bias_attr=bias, )
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
layers += [
|
|
|
|
CausalConv1DTranspose(
|
|
|
|
channels // (2**i),
|
|
|
|
channels // (2**(i + 1)),
|
|
|
|
upsample_scale * 2,
|
|
|
|
stride=upsample_scale,
|
|
|
|
bias=bias, )
|
|
|
|
]
|
|
|
|
|
|
|
|
# add residual stack
|
|
|
|
for j in range(stacks):
|
|
|
|
layers += [
|
|
|
|
ResidualStack(
|
|
|
|
kernel_size=stack_kernel_size,
|
|
|
|
channels=channels // (2**(i + 1)),
|
|
|
|
dilation=stack_kernel_size**j,
|
|
|
|
bias=bias,
|
|
|
|
nonlinear_activation=nonlinear_activation,
|
|
|
|
nonlinear_activation_params=nonlinear_activation_params,
|
|
|
|
pad=pad,
|
|
|
|
pad_params=pad_params,
|
|
|
|
use_causal_conv=use_causal_conv, )
|
|
|
|
]
|
|
|
|
|
|
|
|
# add final layer
|
|
|
|
layers += [
|
|
|
|
get_activation(nonlinear_activation, **nonlinear_activation_params)
|
|
|
|
]
|
|
|
|
if not use_causal_conv:
|
|
|
|
layers += [
|
|
|
|
getattr(nn, pad)((kernel_size - 1) // 2, **pad_params),
|
|
|
|
nn.Conv1D(
|
|
|
|
channels // (2**(i + 1)),
|
|
|
|
out_channels,
|
|
|
|
kernel_size,
|
|
|
|
bias_attr=bias),
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
layers += [
|
|
|
|
CausalConv1D(
|
|
|
|
channels // (2**(i + 1)),
|
|
|
|
out_channels,
|
|
|
|
kernel_size,
|
|
|
|
bias=bias,
|
|
|
|
pad=pad,
|
|
|
|
pad_params=pad_params, ),
|
|
|
|
]
|
|
|
|
if use_final_nonlinear_activation:
|
|
|
|
layers += [nn.Tanh()]
|
|
|
|
|
|
|
|
# define the model as a single function
|
|
|
|
self.melgan = nn.Sequential(*layers)
|
|
|
|
nn.initializer.set_global_initializer(None)
|
|
|
|
|
|
|
|
# apply weight norm
|
|
|
|
if use_weight_norm:
|
|
|
|
self.apply_weight_norm()
|
|
|
|
|
|
|
|
# reset parameters
|
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
# initialize pqmf for multi-band melgan inference
|
|
|
|
if out_channels > 1:
|
|
|
|
self.pqmf = PQMF(subbands=out_channels)
|
|
|
|
else:
|
|
|
|
self.pqmf = None
|
|
|
|
|
|
|
|
def forward(self, c):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
c : Tensor
|
|
|
|
Input tensor (B, in_channels, T).
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
Tensor
|
|
|
|
Output tensor (B, out_channels, T ** prod(upsample_scales)).
|
|
|
|
"""
|
|
|
|
out = self.melgan(c)
|
|
|
|
return out
|
|
|
|
|
|
|
|
def apply_weight_norm(self):
|
|
|
|
"""Recursively apply weight normalization to all the Convolution layers
|
|
|
|
in the sublayers.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _apply_weight_norm(layer):
|
|
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D, nn.Conv1DTranspose)):
|
|
|
|
nn.utils.weight_norm(layer)
|
|
|
|
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
|
|
|
|
def remove_weight_norm(self):
|
|
|
|
"""Recursively remove weight normalization from all the Convolution
|
|
|
|
layers in the sublayers.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _remove_weight_norm(layer):
|
|
|
|
try:
|
|
|
|
nn.utils.remove_weight_norm(layer)
|
|
|
|
except ValueError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
"""Reset parameters.
|
|
|
|
This initialization follows official implementation manner.
|
|
|
|
https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py
|
|
|
|
"""
|
|
|
|
# 定义参数为float的正态分布。
|
|
|
|
dist = paddle.distribution.Normal(loc=0.0, scale=0.02)
|
|
|
|
|
|
|
|
def _reset_parameters(m):
|
|
|
|
if isinstance(m, nn.Conv1D) or isinstance(m, nn.Conv1DTranspose):
|
|
|
|
w = dist.sample(m.weight.shape)
|
|
|
|
m.weight.set_value(w)
|
|
|
|
|
|
|
|
self.apply(_reset_parameters)
|
|
|
|
|
|
|
|
def inference(self, c):
|
|
|
|
"""Perform inference.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
c : Union[Tensor, ndarray]
|
|
|
|
Input tensor (T, in_channels).
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
Tensor
|
|
|
|
Output tensor (out_channels*T ** prod(upsample_scales), 1).
|
|
|
|
"""
|
|
|
|
# pseudo batch
|
|
|
|
c = c.transpose([1, 0]).unsqueeze(0)
|
|
|
|
# (B, out_channels, T ** prod(upsample_scales)
|
|
|
|
out = self.melgan(c)
|
|
|
|
if self.pqmf is not None:
|
|
|
|
# (B, 1, out_channels * T ** prod(upsample_scales)
|
|
|
|
out = self.pqmf(out)
|
|
|
|
out = out.squeeze(0).transpose([1, 0])
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class MelGANDiscriminator(nn.Layer):
|
|
|
|
"""MelGAN discriminator module."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_channels: int=1,
|
|
|
|
out_channels: int=1,
|
|
|
|
kernel_sizes: List[int]=[5, 3],
|
|
|
|
channels: int=16,
|
|
|
|
max_downsample_channels: int=1024,
|
|
|
|
bias: bool=True,
|
|
|
|
downsample_scales: List[int]=[4, 4, 4, 4],
|
|
|
|
nonlinear_activation: str="leakyrelu",
|
|
|
|
nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2},
|
|
|
|
pad: str="Pad1D",
|
|
|
|
pad_params: Dict[str, Any]={"mode": "reflect"},
|
|
|
|
init_type: str="xavier_uniform", ):
|
|
|
|
"""Initilize MelGAN discriminator module.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
in_channels : int
|
|
|
|
Number of input channels.
|
|
|
|
out_channels : int
|
|
|
|
Number of output channels.
|
|
|
|
kernel_sizes : List[int]
|
|
|
|
List of two kernel sizes. The prod will be used for the first conv layer,
|
|
|
|
and the first and the second kernel sizes will be used for the last two layers.
|
|
|
|
For example if kernel_sizes = [5, 3], the first layer kernel size will be 5 * 3 = 15,
|
|
|
|
the last two layers' kernel size will be 5 and 3, respectively.
|
|
|
|
channels : int
|
|
|
|
Initial number of channels for conv layer.
|
|
|
|
max_downsample_channels : int
|
|
|
|
Maximum number of channels for downsampling layers.
|
|
|
|
bias : bool
|
|
|
|
Whether to add bias parameter in convolution layers.
|
|
|
|
downsample_scales : List[int]
|
|
|
|
List of downsampling scales.
|
|
|
|
nonlinear_activation : str
|
|
|
|
Activation function module name.
|
|
|
|
nonlinear_activation_params : dict
|
|
|
|
Hyperparameters for activation function.
|
|
|
|
pad : str
|
|
|
|
Padding function module name before dilated convolution layer.
|
|
|
|
pad_params : dict
|
|
|
|
Hyperparameters for padding function.
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
# for compatibility
|
|
|
|
if nonlinear_activation:
|
|
|
|
nonlinear_activation = nonlinear_activation.lower()
|
|
|
|
|
|
|
|
# initialize parameters
|
|
|
|
initialize(self, init_type)
|
|
|
|
|
|
|
|
self.layers = nn.LayerList()
|
|
|
|
|
|
|
|
# check kernel size is valid
|
|
|
|
assert len(kernel_sizes) == 2
|
|
|
|
assert kernel_sizes[0] % 2 == 1
|
|
|
|
assert kernel_sizes[1] % 2 == 1
|
|
|
|
|
|
|
|
# add first layer
|
|
|
|
self.layers.append(
|
|
|
|
nn.Sequential(
|
|
|
|
getattr(nn, pad)((np.prod(kernel_sizes) - 1) // 2, **
|
|
|
|
pad_params),
|
|
|
|
nn.Conv1D(
|
|
|
|
in_channels,
|
|
|
|
channels,
|
|
|
|
int(np.prod(kernel_sizes)),
|
|
|
|
bias_attr=bias),
|
|
|
|
get_activation(nonlinear_activation, **
|
|
|
|
nonlinear_activation_params), ))
|
|
|
|
|
|
|
|
# add downsample layers
|
|
|
|
in_chs = channels
|
|
|
|
for downsample_scale in downsample_scales:
|
|
|
|
out_chs = min(in_chs * downsample_scale, max_downsample_channels)
|
|
|
|
self.layers.append(
|
|
|
|
nn.Sequential(
|
|
|
|
nn.Conv1D(
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
kernel_size=downsample_scale * 10 + 1,
|
|
|
|
stride=downsample_scale,
|
|
|
|
padding=downsample_scale * 5,
|
|
|
|
groups=in_chs // 4,
|
|
|
|
bias_attr=bias, ),
|
|
|
|
get_activation(nonlinear_activation, **
|
|
|
|
nonlinear_activation_params), ))
|
|
|
|
in_chs = out_chs
|
|
|
|
|
|
|
|
# add final layers
|
|
|
|
out_chs = min(in_chs * 2, max_downsample_channels)
|
|
|
|
self.layers.append(
|
|
|
|
nn.Sequential(
|
|
|
|
nn.Conv1D(
|
|
|
|
in_chs,
|
|
|
|
out_chs,
|
|
|
|
kernel_sizes[0],
|
|
|
|
padding=(kernel_sizes[0] - 1) // 2,
|
|
|
|
bias_attr=bias, ),
|
|
|
|
get_activation(nonlinear_activation, **
|
|
|
|
nonlinear_activation_params), ))
|
|
|
|
self.layers.append(
|
|
|
|
nn.Conv1D(
|
|
|
|
out_chs,
|
|
|
|
out_channels,
|
|
|
|
kernel_sizes[1],
|
|
|
|
padding=(kernel_sizes[1] - 1) // 2,
|
|
|
|
bias_attr=bias, ), )
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : Tensor
|
|
|
|
Input noise signal (B, 1, T).
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
List
|
|
|
|
List of output tensors of each layer (for feat_match_loss).
|
|
|
|
"""
|
|
|
|
outs = []
|
|
|
|
for f in self.layers:
|
|
|
|
x = f(x)
|
|
|
|
outs += [x]
|
|
|
|
|
|
|
|
return outs
|
|
|
|
|
|
|
|
|
|
|
|
class MelGANMultiScaleDiscriminator(nn.Layer):
|
|
|
|
"""MelGAN multi-scale discriminator module."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_channels: int=1,
|
|
|
|
out_channels: int=1,
|
|
|
|
scales: int=3,
|
|
|
|
downsample_pooling: str="AvgPool1D",
|
|
|
|
# follow the official implementation setting
|
|
|
|
downsample_pooling_params: Dict[str, Any]={
|
|
|
|
"kernel_size": 4,
|
|
|
|
"stride": 2,
|
|
|
|
"padding": 1,
|
|
|
|
"exclusive": True,
|
|
|
|
},
|
|
|
|
kernel_sizes: List[int]=[5, 3],
|
|
|
|
channels: int=16,
|
|
|
|
max_downsample_channels: int=1024,
|
|
|
|
bias: bool=True,
|
|
|
|
downsample_scales: List[int]=[4, 4, 4, 4],
|
|
|
|
nonlinear_activation: str="leakyrelu",
|
|
|
|
nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2},
|
|
|
|
pad: str="Pad1D",
|
|
|
|
pad_params: Dict[str, Any]={"mode": "reflect"},
|
|
|
|
use_weight_norm: bool=True,
|
|
|
|
init_type: str="xavier_uniform", ):
|
|
|
|
"""Initilize MelGAN multi-scale discriminator module.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
in_channels : int
|
|
|
|
Number of input channels.
|
|
|
|
out_channels : int
|
|
|
|
Number of output channels.
|
|
|
|
scales : int
|
|
|
|
Number of multi-scales.
|
|
|
|
downsample_pooling : str
|
|
|
|
Pooling module name for downsampling of the inputs.
|
|
|
|
downsample_pooling_params : dict
|
|
|
|
Parameters for the above pooling module.
|
|
|
|
kernel_sizes : List[int]
|
|
|
|
List of two kernel sizes. The sum will be used for the first conv layer,
|
|
|
|
and the first and the second kernel sizes will be used for the last two layers.
|
|
|
|
channels : int
|
|
|
|
Initial number of channels for conv layer.
|
|
|
|
max_downsample_channels : int
|
|
|
|
Maximum number of channels for downsampling layers.
|
|
|
|
bias : bool
|
|
|
|
Whether to add bias parameter in convolution layers.
|
|
|
|
downsample_scales : List[int]
|
|
|
|
List of downsampling scales.
|
|
|
|
nonlinear_activation : str
|
|
|
|
Activation function module name.
|
|
|
|
nonlinear_activation_params : dict
|
|
|
|
Hyperparameters for activation function.
|
|
|
|
pad : str
|
|
|
|
Padding function module name before dilated convolution layer.
|
|
|
|
pad_params : dict
|
|
|
|
Hyperparameters for padding function.
|
|
|
|
use_causal_conv : bool
|
|
|
|
Whether to use causal convolution.
|
|
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
# initialize parameters
|
|
|
|
initialize(self, init_type)
|
|
|
|
|
|
|
|
# for
|
|
|
|
if nonlinear_activation:
|
|
|
|
nonlinear_activation = nonlinear_activation.lower()
|
|
|
|
|
|
|
|
self.discriminators = nn.LayerList()
|
|
|
|
|
|
|
|
# add discriminators
|
|
|
|
for _ in range(scales):
|
|
|
|
self.discriminators.append(
|
|
|
|
MelGANDiscriminator(
|
|
|
|
in_channels=in_channels,
|
|
|
|
out_channels=out_channels,
|
|
|
|
kernel_sizes=kernel_sizes,
|
|
|
|
channels=channels,
|
|
|
|
max_downsample_channels=max_downsample_channels,
|
|
|
|
bias=bias,
|
|
|
|
downsample_scales=downsample_scales,
|
|
|
|
nonlinear_activation=nonlinear_activation,
|
|
|
|
nonlinear_activation_params=nonlinear_activation_params,
|
|
|
|
pad=pad,
|
|
|
|
pad_params=pad_params, ))
|
|
|
|
self.pooling = getattr(nn, downsample_pooling)(
|
|
|
|
**downsample_pooling_params)
|
|
|
|
|
|
|
|
nn.initializer.set_global_initializer(None)
|
|
|
|
|
|
|
|
# apply weight norm
|
|
|
|
if use_weight_norm:
|
|
|
|
self.apply_weight_norm()
|
|
|
|
|
|
|
|
# reset parameters
|
|
|
|
self.reset_parameters()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
x : Tensor
|
|
|
|
Input noise signal (B, 1, T).
|
|
|
|
Returns
|
|
|
|
----------
|
|
|
|
List
|
|
|
|
List of list of each discriminator outputs, which consists of each layer output tensors.
|
|
|
|
"""
|
|
|
|
outs = []
|
|
|
|
for f in self.discriminators:
|
|
|
|
outs += [f(x)]
|
|
|
|
x = self.pooling(x)
|
|
|
|
|
|
|
|
return outs
|
|
|
|
|
|
|
|
def apply_weight_norm(self):
|
|
|
|
"""Recursively apply weight normalization to all the Convolution layers
|
|
|
|
in the sublayers.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _apply_weight_norm(layer):
|
|
|
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D, nn.Conv1DTranspose)):
|
|
|
|
nn.utils.weight_norm(layer)
|
|
|
|
|
|
|
|
self.apply(_apply_weight_norm)
|
|
|
|
|
|
|
|
def remove_weight_norm(self):
|
|
|
|
"""Recursively remove weight normalization from all the Convolution
|
|
|
|
layers in the sublayers.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _remove_weight_norm(layer):
|
|
|
|
try:
|
|
|
|
nn.utils.remove_weight_norm(layer)
|
|
|
|
except ValueError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
self.apply(_remove_weight_norm)
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
"""Reset parameters.
|
|
|
|
This initialization follows official implementation manner.
|
|
|
|
https://github.com/descriptinc/melgan-neurips/blob/master/mel2wav/modules.py
|
|
|
|
"""
|
|
|
|
|
|
|
|
# 定义参数为float的正态分布。
|
|
|
|
dist = paddle.distribution.Normal(loc=0.0, scale=0.02)
|
|
|
|
|
|
|
|
def _reset_parameters(m):
|
|
|
|
if isinstance(m, nn.Conv1D) or isinstance(m, nn.Conv1DTranspose):
|
|
|
|
w = dist.sample(m.weight.shape)
|
|
|
|
m.weight.set_value(w)
|
|
|
|
|
|
|
|
self.apply(_reset_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
class MelGANInference(nn.Layer):
|
|
|
|
def __init__(self, normalizer, melgan_generator):
|
|
|
|
super().__init__()
|
|
|
|
self.normalizer = normalizer
|
|
|
|
self.melgan_generator = melgan_generator
|
|
|
|
|
|
|
|
def forward(self, logmel):
|
|
|
|
normalized_mel = self.normalizer(logmel)
|
|
|
|
wav = self.melgan_generator.inference(normalized_mel)
|
|
|
|
return wav
|