|
|
|
|
#!/bin/bash
|
|
|
|
|
|
|
|
|
|
set -xe
|
|
|
|
|
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
|
|
|
|
|
# 参数说明
|
|
|
|
|
function _set_params(){
|
|
|
|
|
run_mode=${1:-"sp"} # 单卡sp|多卡mp
|
|
|
|
|
batch_size=${2:-"64"}
|
|
|
|
|
fp_item=${3:-"fp32"} # fp32|fp16
|
|
|
|
|
max_iter=${4:-"500"} # 可选,如果需要修改代码提前中断
|
|
|
|
|
model_name=${5:-"model_name"}
|
|
|
|
|
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数
|
|
|
|
|
|
|
|
|
|
# 以下不用修改
|
|
|
|
|
device=${CUDA_VISIBLE_DEVICES//,/ }
|
|
|
|
|
arr=(${device})
|
|
|
|
|
num_gpu_devices=${#arr[*]}
|
|
|
|
|
log_file=${run_log_path}/${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
|
|
|
|
|
}
|
|
|
|
|
function _train(){
|
|
|
|
|
echo "Train on ${num_gpu_devices} GPUs"
|
|
|
|
|
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
|
|
|
|
|
|
|
|
|
|
train_cmd="--model_name=${model_name}
|
|
|
|
|
--batch_size=${batch_size}
|
|
|
|
|
--fp=${fp_item} \
|
|
|
|
|
--max_iter=${max_iter} "
|
|
|
|
|
case ${run_mode} in
|
|
|
|
|
sp) train_cmd="python -u tools/train.py "${train_cmd}" ;;
|
|
|
|
|
mp)
|
|
|
|
|
train_cmd="python -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py "${train_cmd}"
|
|
|
|
|
log_parse_file="mylog/workerlog.0" ;;
|
|
|
|
|
*) echo "choose run_mode(sp or mp)"; exit 1;
|
|
|
|
|
esac
|
|
|
|
|
# 以下不用修改
|
|
|
|
|
timeout 15m ${train_cmd} > ${log_file} 2>&1
|
|
|
|
|
if [ $? -ne 0 ];then
|
|
|
|
|
echo -e "${model_name}, FAIL"
|
|
|
|
|
export job_fail_flag=1
|
|
|
|
|
else
|
|
|
|
|
echo -e "${model_name}, SUCCESS"
|
|
|
|
|
export job_fail_flag=0
|
|
|
|
|
fi
|
|
|
|
|
kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
|
|
|
|
|
|
|
|
|
|
if [ $run_mode = "mp" -a -d mylog ]; then
|
|
|
|
|
rm ${log_file}
|
|
|
|
|
cp mylog/workerlog.0 ${log_file}
|
|
|
|
|
fi
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
_set_params $@
|
|
|
|
|
_train
|
|
|
|
|
|