You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
776 lines
28 KiB
776 lines
28 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import math
|
||
|
from typing import Any
|
||
|
from typing import Dict
|
||
|
from typing import List
|
||
|
from typing import Optional
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
from paddle import nn
|
||
|
from paddle.nn import functional as F
|
||
|
|
||
|
|
||
|
class Stretch2D(nn.Layer):
|
||
|
def __init__(self, w_scale: int, h_scale: int, mode: str="nearest"):
|
||
|
"""Strech an image (or image-like object) with some interpolation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
w_scale : int
|
||
|
Scalar of width.
|
||
|
h_scale : int
|
||
|
Scalar of the height.
|
||
|
mode : str, optional
|
||
|
Interpolation mode, modes suppored are "nearest", "bilinear",
|
||
|
"trilinear", "bicubic", "linear" and "area",by default "nearest"
|
||
|
|
||
|
For more details about interpolation, see
|
||
|
`paddle.nn.functional.interpolate <https://www.paddlepaddle.org.cn/documentation/docs/en/api/paddle/nn/functional/interpolate_en.html>`_.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.w_scale = w_scale
|
||
|
self.h_scale = h_scale
|
||
|
self.mode = mode
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : Tensor
|
||
|
Shape (N, C, H, W)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Tensor
|
||
|
Shape (N, C, H', W'), where ``H'=h_scale * H``, ``W'=w_scale * W``.
|
||
|
The stretched image.
|
||
|
"""
|
||
|
out = F.interpolate(
|
||
|
x, scale_factor=(self.h_scale, self.w_scale), mode=self.mode)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class UpsampleNet(nn.Layer):
|
||
|
"""A Layer to upsample spectrogram by applying consecutive stretch and
|
||
|
convolutions.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
upsample_scales : List[int]
|
||
|
Upsampling factors for each strech.
|
||
|
nonlinear_activation : Optional[str], optional
|
||
|
Activation after each convolution, by default None
|
||
|
nonlinear_activation_params : Dict[str, Any], optional
|
||
|
Parameters passed to construct the activation, by default {}
|
||
|
interpolate_mode : str, optional
|
||
|
Interpolation mode of the strech, by default "nearest"
|
||
|
freq_axis_kernel_size : int, optional
|
||
|
Convolution kernel size along the frequency axis, by default 1
|
||
|
use_causal_conv : bool, optional
|
||
|
Whether to use causal padding before convolution, by default False
|
||
|
|
||
|
If True, Causal padding is used along the time axis, i.e. padding
|
||
|
amount is ``receptive field - 1`` and 0 for before and after,
|
||
|
respectively.
|
||
|
|
||
|
If False, "same" padding is used along the time axis.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
upsample_scales: List[int],
|
||
|
nonlinear_activation: Optional[str]=None,
|
||
|
nonlinear_activation_params: Dict[str, Any]={},
|
||
|
interpolate_mode: str="nearest",
|
||
|
freq_axis_kernel_size: int=1,
|
||
|
use_causal_conv: bool=False):
|
||
|
super().__init__()
|
||
|
self.use_causal_conv = use_causal_conv
|
||
|
self.up_layers = nn.LayerList()
|
||
|
for scale in upsample_scales:
|
||
|
stretch = Stretch2D(scale, 1, interpolate_mode)
|
||
|
assert freq_axis_kernel_size % 2 == 1
|
||
|
freq_axis_padding = (freq_axis_kernel_size - 1) // 2
|
||
|
kernel_size = (freq_axis_kernel_size, scale * 2 + 1)
|
||
|
if use_causal_conv:
|
||
|
padding = (freq_axis_padding, scale * 2)
|
||
|
else:
|
||
|
padding = (freq_axis_padding, scale)
|
||
|
conv = nn.Conv2D(
|
||
|
1, 1, kernel_size, padding=padding, bias_attr=False)
|
||
|
self.up_layers.extend([stretch, conv])
|
||
|
if nonlinear_activation is not None:
|
||
|
nonlinear = getattr(
|
||
|
nn, nonlinear_activation)(**nonlinear_activation_params)
|
||
|
self.up_layers.append(nonlinear)
|
||
|
|
||
|
def forward(self, c):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
c : Tensor
|
||
|
Shape (N, F, T), spectrogram
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Tensor
|
||
|
Shape (N, F, T'), where ``T' = upsample_factor * T``, upsampled
|
||
|
spectrogram
|
||
|
"""
|
||
|
c = c.unsqueeze(1)
|
||
|
for f in self.up_layers:
|
||
|
if self.use_causal_conv and isinstance(f, nn.Conv2D):
|
||
|
c = f(c)[:, :, :, c.shape[-1]]
|
||
|
else:
|
||
|
c = f(c)
|
||
|
return c.squeeze(1)
|
||
|
|
||
|
|
||
|
class ConvInUpsampleNet(nn.Layer):
|
||
|
"""A Layer to upsample spectrogram composed of a convolution and an
|
||
|
UpsampleNet.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
upsample_scales : List[int]
|
||
|
Upsampling factors for each strech.
|
||
|
nonlinear_activation : Optional[str], optional
|
||
|
Activation after each convolution, by default None
|
||
|
nonlinear_activation_params : Dict[str, Any], optional
|
||
|
Parameters passed to construct the activation, by default {}
|
||
|
interpolate_mode : str, optional
|
||
|
Interpolation mode of the strech, by default "nearest"
|
||
|
freq_axis_kernel_size : int, optional
|
||
|
Convolution kernel size along the frequency axis, by default 1
|
||
|
aux_channels : int, optional
|
||
|
Feature size of the input, by default 80
|
||
|
aux_context_window : int, optional
|
||
|
Context window of the first 1D convolution applied to the input. It
|
||
|
related to the kernel size of the convolution, by default 0
|
||
|
|
||
|
If use causal convolution, the kernel size is ``window + 1``, else
|
||
|
the kernel size is ``2 * window + 1``.
|
||
|
use_causal_conv : bool, optional
|
||
|
Whether to use causal padding before convolution, by default False
|
||
|
|
||
|
If True, Causal padding is used along the time axis, i.e. padding
|
||
|
amount is ``receptive field - 1`` and 0 for before and after,
|
||
|
respectively.
|
||
|
|
||
|
If False, "same" padding is used along the time axis.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
upsample_scales: List[int],
|
||
|
nonlinear_activation: Optional[str]=None,
|
||
|
nonlinear_activation_params: Dict[str, Any]={},
|
||
|
interpolate_mode: str="nearest",
|
||
|
freq_axis_kernel_size: int=1,
|
||
|
aux_channels: int=80,
|
||
|
aux_context_window: int=0,
|
||
|
use_causal_conv: bool=False):
|
||
|
super().__init__()
|
||
|
self.aux_context_window = aux_context_window
|
||
|
self.use_causal_conv = use_causal_conv and aux_context_window > 0
|
||
|
kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1
|
||
|
self.conv_in = nn.Conv1D(
|
||
|
aux_channels,
|
||
|
aux_channels,
|
||
|
kernel_size=kernel_size,
|
||
|
bias_attr=False)
|
||
|
self.upsample = UpsampleNet(
|
||
|
upsample_scales=upsample_scales,
|
||
|
nonlinear_activation=nonlinear_activation,
|
||
|
nonlinear_activation_params=nonlinear_activation_params,
|
||
|
interpolate_mode=interpolate_mode,
|
||
|
freq_axis_kernel_size=freq_axis_kernel_size,
|
||
|
use_causal_conv=use_causal_conv)
|
||
|
|
||
|
def forward(self, c):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
c : Tensor
|
||
|
Shape (N, F, T), spectrogram
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Tensors
|
||
|
Shape (N, F, T'), where ``T' = upsample_factor * T``, upsampled
|
||
|
spectrogram
|
||
|
"""
|
||
|
c_ = self.conv_in(c)
|
||
|
c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_
|
||
|
return self.upsample(c)
|
||
|
|
||
|
|
||
|
class ResidualBlock(nn.Layer):
|
||
|
"""A gated activation unit composed of an 1D convolution, a gated tanh
|
||
|
unit and parametric redidual and skip connections. For more details,
|
||
|
refer to `WaveNet: A Generative Model for Raw Audio <https://arxiv.org/abs/1609.03499>`_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
kernel_size : int, optional
|
||
|
Kernel size of the 1D convolution, by default 3
|
||
|
residual_channels : int, optional
|
||
|
Feature size of the resiaudl output(and also the input), by default 64
|
||
|
gate_channels : int, optional
|
||
|
Output feature size of the 1D convolution, by default 128
|
||
|
skip_channels : int, optional
|
||
|
Feature size of the skip output, by default 64
|
||
|
aux_channels : int, optional
|
||
|
Feature size of the auxiliary input (e.g. spectrogram), by default 80
|
||
|
dropout : float, optional
|
||
|
Probability of the dropout before the 1D convolution, by default 0.
|
||
|
dilation : int, optional
|
||
|
Dilation of the 1D convolution, by default 1
|
||
|
bias : bool, optional
|
||
|
Whether to use bias in the 1D convolution, by default True
|
||
|
use_causal_conv : bool, optional
|
||
|
Whether to use causal padding for the 1D convolution, by default False
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
kernel_size: int=3,
|
||
|
residual_channels: int=64,
|
||
|
gate_channels: int=128,
|
||
|
skip_channels: int=64,
|
||
|
aux_channels: int=80,
|
||
|
dropout: float=0.,
|
||
|
dilation: int=1,
|
||
|
bias: bool=True,
|
||
|
use_causal_conv: bool=False):
|
||
|
super().__init__()
|
||
|
self.dropout = dropout
|
||
|
if use_causal_conv:
|
||
|
padding = (kernel_size - 1) * dilation
|
||
|
else:
|
||
|
assert kernel_size % 2 == 1
|
||
|
padding = (kernel_size - 1) // 2 * dilation
|
||
|
self.use_causal_conv = use_causal_conv
|
||
|
|
||
|
self.conv = nn.Conv1D(
|
||
|
residual_channels,
|
||
|
gate_channels,
|
||
|
kernel_size,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
bias_attr=bias)
|
||
|
if aux_channels is not None:
|
||
|
self.conv1x1_aux = nn.Conv1D(
|
||
|
aux_channels, gate_channels, kernel_size=1, bias_attr=False)
|
||
|
else:
|
||
|
self.conv1x1_aux = None
|
||
|
|
||
|
gate_out_channels = gate_channels // 2
|
||
|
self.conv1x1_out = nn.Conv1D(
|
||
|
gate_out_channels, residual_channels, kernel_size=1, bias_attr=bias)
|
||
|
self.conv1x1_skip = nn.Conv1D(
|
||
|
gate_out_channels, skip_channels, kernel_size=1, bias_attr=bias)
|
||
|
|
||
|
def forward(self, x, c):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : Tensor
|
||
|
Shape (N, C_res, T), the input features.
|
||
|
c : Tensor
|
||
|
Shape (N, C_aux, T), the auxiliary input.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : Tensor
|
||
|
Shape (N, C_res, T), the residual output, which is used as the
|
||
|
input of the next ResidualBlock in a stack of ResidualBlocks.
|
||
|
skip : Tensor
|
||
|
Shape (N, C_skip, T), the skip output, which is collected among
|
||
|
each layer in a stack of ResidualBlocks.
|
||
|
"""
|
||
|
x_input = x
|
||
|
x = F.dropout(x, self.dropout, training=self.training)
|
||
|
x = self.conv(x)
|
||
|
x = x[:, :, x_input.shape[-1]] if self.use_causal_conv else x
|
||
|
if c is not None:
|
||
|
c = self.conv1x1_aux(c)
|
||
|
x += c
|
||
|
|
||
|
a, b = paddle.chunk(x, 2, axis=1)
|
||
|
x = paddle.tanh(a) * F.sigmoid(b)
|
||
|
|
||
|
skip = self.conv1x1_skip(x)
|
||
|
res = (self.conv1x1_out(x) + x_input) * math.sqrt(0.5)
|
||
|
return res, skip
|
||
|
|
||
|
|
||
|
class PWGGenerator(nn.Layer):
|
||
|
"""Wave Generator for Parallel WaveGAN
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
in_channels : int, optional
|
||
|
Number of channels of the input waveform, by default 1
|
||
|
out_channels : int, optional
|
||
|
Number of channels of the output waveform, by default 1
|
||
|
kernel_size : int, optional
|
||
|
Kernel size of the residual blocks inside, by default 3
|
||
|
layers : int, optional
|
||
|
Number of residual blocks inside, by default 30
|
||
|
stacks : int, optional
|
||
|
The number of groups to split the residual blocks into, by default 3
|
||
|
|
||
|
Within each group, the dilation of the residual block grows
|
||
|
exponentially.
|
||
|
residual_channels : int, optional
|
||
|
Residual channel of the residual blocks, by default 64
|
||
|
gate_channels : int, optional
|
||
|
Gate channel of the residual blocks, by default 128
|
||
|
skip_channels : int, optional
|
||
|
Skip channel of the residual blocks, by default 64
|
||
|
aux_channels : int, optional
|
||
|
Auxiliary channel of the residual blocks, by default 80
|
||
|
aux_context_window : int, optional
|
||
|
The context window size of the first convolution applied to the
|
||
|
auxiliary input, by default 2
|
||
|
dropout : float, optional
|
||
|
Dropout of the residual blocks, by default 0.
|
||
|
bias : bool, optional
|
||
|
Whether to use bias in residual blocks, by default True
|
||
|
use_weight_norm : bool, optional
|
||
|
Whether to use weight norm in all convolutions, by default True
|
||
|
use_causal_conv : bool, optional
|
||
|
Whether to use causal padding in the upsample network and residual
|
||
|
blocks, by default False
|
||
|
upsample_scales : List[int], optional
|
||
|
Upsample scales of the upsample network, by default [4, 4, 4, 4]
|
||
|
nonlinear_activation : Optional[str], optional
|
||
|
Non linear activation in upsample network, by default None
|
||
|
nonlinear_activation_params : Dict[str, Any], optional
|
||
|
Parameters passed to the linear activation in the upsample network,
|
||
|
by default {}
|
||
|
interpolate_mode : str, optional
|
||
|
Interpolation mode of the upsample network, by default "nearest"
|
||
|
freq_axis_kernel_size : int, optional
|
||
|
Kernel size along the frequency axis of the upsample network, by default 1
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels: int=1,
|
||
|
out_channels: int=1,
|
||
|
kernel_size: int=3,
|
||
|
layers: int=30,
|
||
|
stacks: int=3,
|
||
|
residual_channels: int=64,
|
||
|
gate_channels: int=128,
|
||
|
skip_channels: int=64,
|
||
|
aux_channels: int=80,
|
||
|
aux_context_window: int=2,
|
||
|
dropout: float=0.,
|
||
|
bias: bool=True,
|
||
|
use_weight_norm: bool=True,
|
||
|
use_causal_conv: bool=False,
|
||
|
upsample_scales: List[int]=[4, 4, 4, 4],
|
||
|
nonlinear_activation: Optional[str]=None,
|
||
|
nonlinear_activation_params: Dict[str, Any]={},
|
||
|
interpolate_mode: str="nearest",
|
||
|
freq_axis_kernel_size: int=1):
|
||
|
super().__init__()
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.aux_channels = aux_channels
|
||
|
self.aux_context_window = aux_context_window
|
||
|
self.layers = layers
|
||
|
self.stacks = stacks
|
||
|
self.kernel_size = kernel_size
|
||
|
|
||
|
assert layers % stacks == 0
|
||
|
layers_per_stack = layers // stacks
|
||
|
|
||
|
self.first_conv = nn.Conv1D(
|
||
|
in_channels, residual_channels, 1, bias_attr=True)
|
||
|
self.upsample_net = ConvInUpsampleNet(
|
||
|
upsample_scales=upsample_scales,
|
||
|
nonlinear_activation=nonlinear_activation,
|
||
|
nonlinear_activation_params=nonlinear_activation_params,
|
||
|
interpolate_mode=interpolate_mode,
|
||
|
freq_axis_kernel_size=freq_axis_kernel_size,
|
||
|
aux_channels=aux_channels,
|
||
|
aux_context_window=aux_context_window,
|
||
|
use_causal_conv=use_causal_conv)
|
||
|
self.upsample_factor = np.prod(upsample_scales)
|
||
|
|
||
|
self.conv_layers = nn.LayerList()
|
||
|
for layer in range(layers):
|
||
|
dilation = 2**(layer % layers_per_stack)
|
||
|
conv = ResidualBlock(
|
||
|
kernel_size=kernel_size,
|
||
|
residual_channels=residual_channels,
|
||
|
gate_channels=gate_channels,
|
||
|
skip_channels=skip_channels,
|
||
|
aux_channels=aux_channels,
|
||
|
dilation=dilation,
|
||
|
dropout=dropout,
|
||
|
bias=bias,
|
||
|
use_causal_conv=use_causal_conv)
|
||
|
self.conv_layers.append(conv)
|
||
|
|
||
|
self.last_conv_layers = nn.Sequential(nn.ReLU(),
|
||
|
nn.Conv1D(
|
||
|
skip_channels,
|
||
|
skip_channels,
|
||
|
1,
|
||
|
bias_attr=True),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv1D(
|
||
|
skip_channels,
|
||
|
out_channels,
|
||
|
1,
|
||
|
bias_attr=True))
|
||
|
|
||
|
if use_weight_norm:
|
||
|
self.apply_weight_norm()
|
||
|
|
||
|
def forward(self, x, c):
|
||
|
"""Generate waveform.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : Tensor
|
||
|
Shape (N, C_in, T), The input waveform.
|
||
|
c : Tensor
|
||
|
Shape (N, C_aux, T'). The auxiliary input (e.g. spectrogram). It
|
||
|
is upsampled to match the time resolution of the input.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Tensor
|
||
|
Shape (N, C_out, T), the generated waveform.
|
||
|
"""
|
||
|
c = self.upsample_net(c)
|
||
|
assert c.shape[-1] == x.shape[-1]
|
||
|
|
||
|
x = self.first_conv(x)
|
||
|
skips = 0
|
||
|
for f in self.conv_layers:
|
||
|
x, s = f(x, c)
|
||
|
skips += s
|
||
|
skips *= math.sqrt(1.0 / len(self.conv_layers))
|
||
|
|
||
|
x = self.last_conv_layers(skips)
|
||
|
return x
|
||
|
|
||
|
def apply_weight_norm(self):
|
||
|
"""Recursively apply weight normalization to all the Convolution layers
|
||
|
in the sublayers.
|
||
|
"""
|
||
|
|
||
|
def _apply_weight_norm(layer):
|
||
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
||
|
nn.utils.weight_norm(layer)
|
||
|
|
||
|
self.apply(_apply_weight_norm)
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
"""Recursively remove weight normalization from all the Convolution
|
||
|
layers in the sublayers.
|
||
|
"""
|
||
|
|
||
|
def _remove_weight_norm(layer):
|
||
|
try:
|
||
|
nn.utils.remove_weight_norm(layer)
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
self.apply(_remove_weight_norm)
|
||
|
|
||
|
def inference(self, c=None):
|
||
|
"""Waveform generation. This function is used for single instance
|
||
|
inference.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
c : Tensor, optional
|
||
|
Shape (T', C_aux), the auxiliary input, by default None
|
||
|
x : Tensor, optional
|
||
|
Shape (T, C_in), the noise waveform, by default None
|
||
|
If not provided, a sample is drawn from a gaussian distribution.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Tensor
|
||
|
Shape (T, C_out), the generated waveform
|
||
|
"""
|
||
|
x = paddle.randn(
|
||
|
[1, self.in_channels, paddle.shape(c)[0] * self.upsample_factor])
|
||
|
c = paddle.transpose(c, [1, 0]).unsqueeze(0) # pseudo batch
|
||
|
c = nn.Pad1D(self.aux_context_window, mode='replicate')(c)
|
||
|
out = self(x, c).squeeze(0).transpose([1, 0])
|
||
|
return out
|
||
|
|
||
|
|
||
|
class PWGDiscriminator(nn.Layer):
|
||
|
"""A convolutional discriminator for audio.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
in_channels : int, optional
|
||
|
Number of channels of the input audio, by default 1
|
||
|
out_channels : int, optional
|
||
|
Output feature size, by default 1
|
||
|
kernel_size : int, optional
|
||
|
Kernel size of convolutional sublayers, by default 3
|
||
|
layers : int, optional
|
||
|
Number of layers, by default 10
|
||
|
conv_channels : int, optional
|
||
|
Feature size of the convolutional sublayers, by default 64
|
||
|
dilation_factor : int, optional
|
||
|
The factor with which dilation of each convolutional sublayers grows
|
||
|
exponentially if it is greater than 1, else the dilation of each
|
||
|
convolutional sublayers grows linearly, by default 1
|
||
|
nonlinear_activation : str, optional
|
||
|
The activation after each convolutional sublayer, by default "LeakyReLU"
|
||
|
nonlinear_activation_params : Dict[str, Any], optional
|
||
|
The parameters passed to the activation's initializer, by default
|
||
|
{"negative_slope": 0.2}
|
||
|
bias : bool, optional
|
||
|
Whether to use bias in convolutional sublayers, by default True
|
||
|
use_weight_norm : bool, optional
|
||
|
Whether to use weight normalization at all convolutional sublayers,
|
||
|
by default True
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int=1,
|
||
|
out_channels: int=1,
|
||
|
kernel_size: int=3,
|
||
|
layers: int=10,
|
||
|
conv_channels: int=64,
|
||
|
dilation_factor: int=1,
|
||
|
nonlinear_activation: str="LeakyReLU",
|
||
|
nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2},
|
||
|
bias: bool=True,
|
||
|
use_weight_norm: bool=True):
|
||
|
super().__init__()
|
||
|
assert kernel_size % 2 == 1
|
||
|
assert dilation_factor > 0
|
||
|
conv_layers = []
|
||
|
conv_in_channels = in_channels
|
||
|
for i in range(layers - 1):
|
||
|
if i == 0:
|
||
|
dilation = 1
|
||
|
else:
|
||
|
dilation = i if dilation_factor == 1 else dilation_factor**i
|
||
|
conv_in_channels = conv_channels
|
||
|
padding = (kernel_size - 1) // 2 * dilation
|
||
|
conv_layer = nn.Conv1D(
|
||
|
conv_in_channels,
|
||
|
conv_channels,
|
||
|
kernel_size,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
bias_attr=bias)
|
||
|
nonlinear = getattr(
|
||
|
nn, nonlinear_activation)(**nonlinear_activation_params)
|
||
|
conv_layers.append(conv_layer)
|
||
|
conv_layers.append(nonlinear)
|
||
|
padding = (kernel_size - 1) // 2
|
||
|
last_conv = nn.Conv1D(
|
||
|
conv_in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
padding=padding,
|
||
|
bias_attr=bias)
|
||
|
conv_layers.append(last_conv)
|
||
|
self.conv_layers = nn.Sequential(*conv_layers)
|
||
|
|
||
|
if use_weight_norm:
|
||
|
self.apply_weight_norm()
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : Tensor
|
||
|
Shape (N, in_channels, num_samples), the input audio.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Tensor
|
||
|
Shape (N, out_channels, num_samples), the predicted logits.
|
||
|
"""
|
||
|
return self.conv_layers(x)
|
||
|
|
||
|
def apply_weight_norm(self):
|
||
|
def _apply_weight_norm(layer):
|
||
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
||
|
nn.utils.weight_norm(layer)
|
||
|
|
||
|
self.apply(_apply_weight_norm)
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
def _remove_weight_norm(layer):
|
||
|
try:
|
||
|
nn.utils.remove_weight_norm(layer)
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
self.apply(_remove_weight_norm)
|
||
|
|
||
|
|
||
|
class ResidualPWGDiscriminator(nn.Layer):
|
||
|
"""A wavenet-style discriminator for audio.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
in_channels : int, optional
|
||
|
Number of channels of the input audio, by default 1
|
||
|
out_channels : int, optional
|
||
|
Output feature size, by default 1
|
||
|
kernel_size : int, optional
|
||
|
Kernel size of residual blocks, by default 3
|
||
|
layers : int, optional
|
||
|
Number of residual blocks, by default 30
|
||
|
stacks : int, optional
|
||
|
Number of groups of residual blocks, within which the dilation
|
||
|
of each residual blocks grows exponentially, by default 3
|
||
|
residual_channels : int, optional
|
||
|
Residual channels of residual blocks, by default 64
|
||
|
gate_channels : int, optional
|
||
|
Gate channels of residual blocks, by default 128
|
||
|
skip_channels : int, optional
|
||
|
Skip channels of residual blocks, by default 64
|
||
|
dropout : float, optional
|
||
|
Dropout probability of residual blocks, by default 0.
|
||
|
bias : bool, optional
|
||
|
Whether to use bias in residual blocks, by default True
|
||
|
use_weight_norm : bool, optional
|
||
|
Whether to use weight normalization in all convolutional layers,
|
||
|
by default True
|
||
|
use_causal_conv : bool, optional
|
||
|
Whether to use causal convolution in residual blocks, by default False
|
||
|
nonlinear_activation : str, optional
|
||
|
Activation after convolutions other than those in residual blocks,
|
||
|
by default "LeakyReLU"
|
||
|
nonlinear_activation_params : Dict[str, Any], optional
|
||
|
Parameters to pass to the activation, by default {"negative_slope": 0.2}
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels: int=1,
|
||
|
out_channels: int=1,
|
||
|
kernel_size: int=3,
|
||
|
layers: int=30,
|
||
|
stacks: int=3,
|
||
|
residual_channels: int=64,
|
||
|
gate_channels: int=128,
|
||
|
skip_channels: int=64,
|
||
|
dropout: float=0.,
|
||
|
bias: bool=True,
|
||
|
use_weight_norm: bool=True,
|
||
|
use_causal_conv: bool=False,
|
||
|
nonlinear_activation: str="LeakyReLU",
|
||
|
nonlinear_activation_params: Dict[
|
||
|
str, Any]={"negative_slope": 0.2}):
|
||
|
super().__init__()
|
||
|
assert kernel_size % 2 == 1
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.layers = layers
|
||
|
self.stacks = stacks
|
||
|
self.kernel_size = kernel_size
|
||
|
|
||
|
assert layers % stacks == 0
|
||
|
layers_per_stack = layers // stacks
|
||
|
|
||
|
self.first_conv = nn.Sequential(
|
||
|
nn.Conv1D(in_channels, residual_channels, 1, bias_attr=True),
|
||
|
getattr(nn, nonlinear_activation)(**nonlinear_activation_params))
|
||
|
|
||
|
self.conv_layers = nn.LayerList()
|
||
|
for layer in range(layers):
|
||
|
dilation = 2**(layer % layers_per_stack)
|
||
|
conv = ResidualBlock(
|
||
|
kernel_size=kernel_size,
|
||
|
residual_channels=residual_channels,
|
||
|
gate_channels=gate_channels,
|
||
|
skip_channels=skip_channels,
|
||
|
aux_channels=None, # no auxiliary input
|
||
|
dropout=dropout,
|
||
|
dilation=dilation,
|
||
|
bias=bias,
|
||
|
use_causal_conv=use_causal_conv)
|
||
|
self.conv_layers.append(conv)
|
||
|
|
||
|
self.last_conv_layers = nn.Sequential(
|
||
|
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
|
||
|
nn.Conv1D(skip_channels, skip_channels, 1, bias_attr=True),
|
||
|
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
|
||
|
nn.Conv1D(skip_channels, out_channels, 1, bias_attr=True))
|
||
|
|
||
|
if use_weight_norm:
|
||
|
self.apply_weight_norm()
|
||
|
|
||
|
def forward(self, x):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
x : Tensor
|
||
|
Shape (N, in_channels, num_samples), the input audio.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Tensor
|
||
|
Shape (N, out_channels, num_samples), the predicted logits.
|
||
|
"""
|
||
|
x = self.first_conv(x)
|
||
|
skip = 0
|
||
|
for f in self.conv_layers:
|
||
|
x, h = f(x, None)
|
||
|
skip += h
|
||
|
skip *= math.sqrt(1 / len(self.conv_layers))
|
||
|
|
||
|
x = skip
|
||
|
x = self.last_conv_layers(x)
|
||
|
return x
|
||
|
|
||
|
def apply_weight_norm(self):
|
||
|
def _apply_weight_norm(layer):
|
||
|
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
|
||
|
nn.utils.weight_norm(layer)
|
||
|
|
||
|
self.apply(_apply_weight_norm)
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
def _remove_weight_norm(layer):
|
||
|
try:
|
||
|
nn.utils.remove_weight_norm(layer)
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
self.apply(_remove_weight_norm)
|
||
|
|
||
|
|
||
|
class PWGInference(nn.Layer):
|
||
|
def __init__(self, normalizer, pwg_generator):
|
||
|
super().__init__()
|
||
|
self.normalizer = normalizer
|
||
|
self.pwg_generator = pwg_generator
|
||
|
|
||
|
def forward(self, logmel):
|
||
|
normalized_mel = self.normalizer(logmel)
|
||
|
wav = self.pwg_generator.inference(normalized_mel)
|
||
|
return wav
|