You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
6.5 KiB
197 lines
6.5 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tacotron2 encoder related modules."""
|
||
|
import paddle
|
||
3 years ago
|
import six
|
||
3 years ago
|
from paddle import nn
|
||
|
|
||
|
|
||
|
class Encoder(nn.Layer):
|
||
|
"""Encoder module of Spectrogram prediction network.
|
||
|
|
||
|
This is a module of encoder of Spectrogram prediction network in Tacotron2,
|
||
|
which described in `Natural TTS Synthesis by Conditioning WaveNet on Mel
|
||
|
Spectrogram Predictions`_. This is the encoder which converts either a sequence
|
||
|
of characters or acoustic features into the sequence of hidden states.
|
||
|
|
||
|
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
|
||
|
https://arxiv.org/abs/1712.05884
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
idim,
|
||
|
input_layer="embed",
|
||
|
embed_dim=512,
|
||
|
elayers=1,
|
||
|
eunits=512,
|
||
|
econv_layers=3,
|
||
|
econv_chans=512,
|
||
|
econv_filts=5,
|
||
|
use_batch_norm=True,
|
||
|
use_residual=False,
|
||
|
dropout_rate=0.5,
|
||
|
padding_idx=0, ):
|
||
|
"""Initialize Tacotron2 encoder module.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
idim : int
|
||
|
Dimension of the inputs.
|
||
|
input_layer : str
|
||
|
Input layer type.
|
||
|
embed_dim : int, optional
|
||
|
Dimension of character embedding.
|
||
|
elayers : int, optional
|
||
|
The number of encoder blstm layers.
|
||
|
eunits : int, optional
|
||
|
The number of encoder blstm units.
|
||
|
econv_layers : int, optional
|
||
|
The number of encoder conv layers.
|
||
|
econv_filts : int, optional
|
||
|
The number of encoder conv filter size.
|
||
|
econv_chans : int, optional
|
||
|
The number of encoder conv filter channels.
|
||
|
use_batch_norm : bool, optional
|
||
|
Whether to use batch normalization.
|
||
|
use_residual : bool, optional
|
||
|
Whether to use residual connection.
|
||
|
dropout_rate : float, optional
|
||
|
Dropout rate.
|
||
|
|
||
|
"""
|
||
|
super(Encoder, self).__init__()
|
||
|
# store the hyperparameters
|
||
|
self.idim = idim
|
||
|
self.use_residual = use_residual
|
||
|
|
||
|
# define network layer modules
|
||
|
if input_layer == "linear":
|
||
|
self.embed = nn.Linear(idim, econv_chans)
|
||
|
elif input_layer == "embed":
|
||
|
self.embed = nn.Embedding(idim, embed_dim, padding_idx=padding_idx)
|
||
|
else:
|
||
|
raise ValueError("unknown input_layer: " + input_layer)
|
||
|
|
||
|
if econv_layers > 0:
|
||
|
self.convs = nn.LayerList()
|
||
|
for layer in six.moves.range(econv_layers):
|
||
|
ichans = (embed_dim if layer == 0 and input_layer == "embed"
|
||
|
else econv_chans)
|
||
|
if use_batch_norm:
|
||
|
self.convs.append(
|
||
|
nn.Sequential(
|
||
|
nn.Conv1D(
|
||
|
ichans,
|
||
|
econv_chans,
|
||
|
econv_filts,
|
||
|
stride=1,
|
||
|
padding=(econv_filts - 1) // 2,
|
||
|
bias_attr=False, ),
|
||
|
nn.BatchNorm1D(econv_chans),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(dropout_rate), ))
|
||
|
else:
|
||
|
self.convs += [
|
||
|
nn.Sequential(
|
||
|
nn.Conv1D(
|
||
|
ichans,
|
||
|
econv_chans,
|
||
|
econv_filts,
|
||
|
stride=1,
|
||
|
padding=(econv_filts - 1) // 2,
|
||
|
bias_attr=False, ),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(dropout_rate), )
|
||
|
]
|
||
|
else:
|
||
|
self.convs = None
|
||
|
if elayers > 0:
|
||
|
iunits = econv_chans if econv_layers != 0 else embed_dim
|
||
|
# batch_first=True, bidirectional=True
|
||
|
self.blstm = nn.LSTM(
|
||
|
iunits,
|
||
|
eunits // 2,
|
||
|
elayers,
|
||
|
time_major=False,
|
||
|
direction='bidirectional',
|
||
|
bias_ih_attr=True,
|
||
|
bias_hh_attr=True)
|
||
|
else:
|
||
|
self.blstm = None
|
||
|
|
||
|
# # initialize
|
||
|
# self.apply(encoder_init)
|
||
|
|
||
|
def forward(self, xs, ilens=None):
|
||
|
"""Calculate forward propagation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
xs : Tensor
|
||
|
Batch of the padded sequence. Either character ids (B, Tmax)
|
||
|
or acoustic feature (B, Tmax, idim * encoder_reduction_factor).
|
||
|
Padded value should be 0.
|
||
|
ilens : LongTensor
|
||
|
Batch of lengths of each input batch (B,).
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
Tensor
|
||
|
Batch of the sequences of encoder states(B, Tmax, eunits).
|
||
|
LongTensor
|
||
|
Batch of lengths of each sequence (B,)
|
||
|
|
||
|
"""
|
||
|
xs = self.embed(xs).transpose([0, 2, 1])
|
||
|
if self.convs is not None:
|
||
|
for i in six.moves.range(len(self.convs)):
|
||
|
if self.use_residual:
|
||
|
xs += self.convs[i](xs)
|
||
|
else:
|
||
|
xs = self.convs[i](xs)
|
||
|
if self.blstm is None:
|
||
|
return xs.transpose([0, 2, 1])
|
||
|
if not isinstance(ilens, paddle.Tensor):
|
||
|
ilens = paddle.to_tensor(ilens)
|
||
|
xs = xs.transpose([0, 2, 1])
|
||
|
self.blstm.flatten_parameters()
|
||
|
# (B, Tmax, C)
|
||
|
xs, _ = self.blstm(xs)
|
||
|
# hlens 是什么
|
||
|
hlens = ilens
|
||
|
|
||
|
return xs, hlens
|
||
|
|
||
|
def inference(self, x):
|
||
|
"""Inference.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : Tensor
|
||
|
The sequeunce of character ids (T,)
|
||
|
or acoustic feature (T, idim * encoder_reduction_factor).
|
||
|
|
||
|
Returns
|
||
|
----------
|
||
|
Tensor
|
||
|
The sequences of encoder states(T, eunits).
|
||
|
|
||
|
"""
|
||
|
xs = x.unsqueeze(0)
|
||
|
ilens = paddle.to_tensor([x.shape[0]])
|
||
|
|
||
|
return self.forward(xs, ilens)[0][0]
|