You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
4.3 KiB
125 lines
4.3 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Adversarial loss modules."""
|
||
|
import paddle
|
||
|
import paddle.nn.functional as F
|
||
|
from paddle import nn
|
||
|
|
||
|
|
||
|
class GeneratorAdversarialLoss(nn.Layer):
|
||
|
"""Generator adversarial loss module."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
average_by_discriminators=True,
|
||
|
loss_type="mse", ):
|
||
|
"""Initialize GeneratorAversarialLoss module."""
|
||
|
super().__init__()
|
||
|
self.average_by_discriminators = average_by_discriminators
|
||
|
assert loss_type in ["mse", "hinge"], f"{loss_type} is not supported."
|
||
|
if loss_type == "mse":
|
||
|
self.criterion = self._mse_loss
|
||
|
else:
|
||
|
self.criterion = self._hinge_loss
|
||
|
|
||
|
def forward(self, outputs):
|
||
|
"""Calcualate generator adversarial loss.
|
||
|
Parameters
|
||
|
----------
|
||
|
outputs: Tensor or List
|
||
|
Discriminator outputs or list of discriminator outputs.
|
||
|
Returns
|
||
|
----------
|
||
|
Tensor
|
||
|
Generator adversarial loss value.
|
||
|
"""
|
||
|
if isinstance(outputs, (tuple, list)):
|
||
|
adv_loss = 0.0
|
||
|
for i, outputs_ in enumerate(outputs):
|
||
|
if isinstance(outputs_, (tuple, list)):
|
||
|
# case including feature maps
|
||
|
outputs_ = outputs_[-1]
|
||
|
adv_loss += self.criterion(outputs_)
|
||
|
if self.average_by_discriminators:
|
||
|
adv_loss /= i + 1
|
||
|
else:
|
||
|
adv_loss = self.criterion(outputs)
|
||
|
|
||
|
return adv_loss
|
||
|
|
||
|
def _mse_loss(self, x):
|
||
|
return F.mse_loss(x, paddle.ones_like(x))
|
||
|
|
||
|
def _hinge_loss(self, x):
|
||
|
return -x.mean()
|
||
|
|
||
|
|
||
|
class DiscriminatorAdversarialLoss(nn.Layer):
|
||
|
"""Discriminator adversarial loss module."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
average_by_discriminators=True,
|
||
|
loss_type="mse", ):
|
||
|
"""Initialize DiscriminatorAversarialLoss module."""
|
||
|
super().__init__()
|
||
|
self.average_by_discriminators = average_by_discriminators
|
||
|
assert loss_type in ["mse"], f"{loss_type} is not supported."
|
||
|
if loss_type == "mse":
|
||
|
self.fake_criterion = self._mse_fake_loss
|
||
|
self.real_criterion = self._mse_real_loss
|
||
|
|
||
|
def forward(self, outputs_hat, outputs):
|
||
|
"""Calcualate discriminator adversarial loss.
|
||
|
Parameters
|
||
|
----------
|
||
|
outputs_hat : Tensor or list
|
||
|
Discriminator outputs or list of
|
||
|
discriminator outputs calculated from generator outputs.
|
||
|
outputs : Tensor or list
|
||
|
Discriminator outputs or list of
|
||
|
discriminator outputs calculated from groundtruth.
|
||
|
Returns
|
||
|
----------
|
||
|
Tensor
|
||
|
Discriminator real loss value.
|
||
|
Tensor
|
||
|
Discriminator fake loss value.
|
||
|
"""
|
||
|
if isinstance(outputs, (tuple, list)):
|
||
|
real_loss = 0.0
|
||
|
fake_loss = 0.0
|
||
|
for i, (outputs_hat_,
|
||
|
outputs_) in enumerate(zip(outputs_hat, outputs)):
|
||
|
if isinstance(outputs_hat_, (tuple, list)):
|
||
|
# case including feature maps
|
||
|
outputs_hat_ = outputs_hat_[-1]
|
||
|
outputs_ = outputs_[-1]
|
||
|
real_loss += self.real_criterion(outputs_)
|
||
|
fake_loss += self.fake_criterion(outputs_hat_)
|
||
|
if self.average_by_discriminators:
|
||
|
fake_loss /= i + 1
|
||
|
real_loss /= i + 1
|
||
|
else:
|
||
|
real_loss = self.real_criterion(outputs)
|
||
|
fake_loss = self.fake_criterion(outputs_hat)
|
||
|
|
||
|
return real_loss, fake_loss
|
||
|
|
||
|
def _mse_real_loss(self, x):
|
||
|
return F.mse_loss(x, paddle.ones_like(x))
|
||
|
|
||
|
def _mse_fake_loss(self, x):
|
||
|
return F.mse_loss(x, paddle.zeros_like(x))
|