You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/parallel_wavegan/parallel_wavegan.py

775 lines
28 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any
from typing import Dict
from typing import List
from typing import Optional
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
class Stretch2D(nn.Layer):
def __init__(self, w_scale: int, h_scale: int, mode: str="nearest"):
"""Strech an image (or image-like object) with some interpolation.
Parameters
----------
w_scale : int
Scalar of width.
h_scale : int
Scalar of the height.
mode : str, optional
Interpolation mode, modes suppored are "nearest", "bilinear",
"trilinear", "bicubic", "linear" and "area",by default "nearest"
For more details about interpolation, see
`paddle.nn.functional.interpolate <https://www.paddlepaddle.org.cn/documentation/docs/en/api/paddle/nn/functional/interpolate_en.html>`_.
"""
super().__init__()
self.w_scale = w_scale
self.h_scale = h_scale
self.mode = mode
def forward(self, x):
"""
Parameters
----------
x : Tensor
Shape (N, C, H, W)
Returns
-------
Tensor
Shape (N, C, H', W'), where ``H'=h_scale * H``, ``W'=w_scale * W``.
The stretched image.
"""
out = F.interpolate(
x, scale_factor=(self.h_scale, self.w_scale), mode=self.mode)
return out
class UpsampleNet(nn.Layer):
"""A Layer to upsample spectrogram by applying consecutive stretch and
convolutions.
Parameters
----------
upsample_scales : List[int]
Upsampling factors for each strech.
nonlinear_activation : Optional[str], optional
Activation after each convolution, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to construct the activation, by default {}
interpolate_mode : str, optional
Interpolation mode of the strech, by default "nearest"
freq_axis_kernel_size : int, optional
Convolution kernel size along the frequency axis, by default 1
use_causal_conv : bool, optional
Whether to use causal padding before convolution, by default False
If True, Causal padding is used along the time axis, i.e. padding
amount is ``receptive field - 1`` and 0 for before and after,
respectively.
If False, "same" padding is used along the time axis.
"""
def __init__(self,
upsample_scales: List[int],
nonlinear_activation: Optional[str]=None,
nonlinear_activation_params: Dict[str, Any]={},
interpolate_mode: str="nearest",
freq_axis_kernel_size: int=1,
use_causal_conv: bool=False):
super().__init__()
self.use_causal_conv = use_causal_conv
self.up_layers = nn.LayerList()
for scale in upsample_scales:
stretch = Stretch2D(scale, 1, interpolate_mode)
assert freq_axis_kernel_size % 2 == 1
freq_axis_padding = (freq_axis_kernel_size - 1) // 2
kernel_size = (freq_axis_kernel_size, scale * 2 + 1)
if use_causal_conv:
padding = (freq_axis_padding, scale * 2)
else:
padding = (freq_axis_padding, scale)
conv = nn.Conv2D(
1, 1, kernel_size, padding=padding, bias_attr=False)
self.up_layers.extend([stretch, conv])
if nonlinear_activation is not None:
nonlinear = getattr(
nn, nonlinear_activation)(**nonlinear_activation_params)
self.up_layers.append(nonlinear)
def forward(self, c):
"""
Parameters
----------
c : Tensor
Shape (N, F, T), spectrogram
Returns
-------
Tensor
Shape (N, F, T'), where ``T' = upsample_factor * T``, upsampled
spectrogram
"""
c = c.unsqueeze(1)
for f in self.up_layers:
if self.use_causal_conv and isinstance(f, nn.Conv2D):
c = f(c)[:, :, :, c.shape[-1]]
else:
c = f(c)
return c.squeeze(1)
class ConvInUpsampleNet(nn.Layer):
"""A Layer to upsample spectrogram composed of a convolution and an
UpsampleNet.
Parameters
----------
upsample_scales : List[int]
Upsampling factors for each strech.
nonlinear_activation : Optional[str], optional
Activation after each convolution, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to construct the activation, by default {}
interpolate_mode : str, optional
Interpolation mode of the strech, by default "nearest"
freq_axis_kernel_size : int, optional
Convolution kernel size along the frequency axis, by default 1
aux_channels : int, optional
Feature size of the input, by default 80
aux_context_window : int, optional
Context window of the first 1D convolution applied to the input. It
related to the kernel size of the convolution, by default 0
If use causal convolution, the kernel size is ``window + 1``, else
the kernel size is ``2 * window + 1``.
use_causal_conv : bool, optional
Whether to use causal padding before convolution, by default False
If True, Causal padding is used along the time axis, i.e. padding
amount is ``receptive field - 1`` and 0 for before and after,
respectively.
If False, "same" padding is used along the time axis.
"""
def __init__(self,
upsample_scales: List[int],
nonlinear_activation: Optional[str]=None,
nonlinear_activation_params: Dict[str, Any]={},
interpolate_mode: str="nearest",
freq_axis_kernel_size: int=1,
aux_channels: int=80,
aux_context_window: int=0,
use_causal_conv: bool=False):
super().__init__()
self.aux_context_window = aux_context_window
self.use_causal_conv = use_causal_conv and aux_context_window > 0
kernel_size = aux_context_window + 1 if use_causal_conv else 2 * aux_context_window + 1
self.conv_in = nn.Conv1D(
aux_channels,
aux_channels,
kernel_size=kernel_size,
bias_attr=False)
self.upsample = UpsampleNet(
upsample_scales=upsample_scales,
nonlinear_activation=nonlinear_activation,
nonlinear_activation_params=nonlinear_activation_params,
interpolate_mode=interpolate_mode,
freq_axis_kernel_size=freq_axis_kernel_size,
use_causal_conv=use_causal_conv)
def forward(self, c):
"""
Parameters
----------
c : Tensor
Shape (N, F, T), spectrogram
Returns
-------
Tensors
Shape (N, F, T'), where ``T' = upsample_factor * T``, upsampled
spectrogram
"""
c_ = self.conv_in(c)
c = c_[:, :, :-self.aux_context_window] if self.use_causal_conv else c_
return self.upsample(c)
class ResidualBlock(nn.Layer):
"""A gated activation unit composed of an 1D convolution, a gated tanh
unit and parametric redidual and skip connections. For more details,
refer to `WaveNet: A Generative Model for Raw Audio <https://arxiv.org/abs/1609.03499>`_.
Parameters
----------
kernel_size : int, optional
Kernel size of the 1D convolution, by default 3
residual_channels : int, optional
Feature size of the resiaudl output(and also the input), by default 64
gate_channels : int, optional
Output feature size of the 1D convolution, by default 128
skip_channels : int, optional
Feature size of the skip output, by default 64
aux_channels : int, optional
Feature size of the auxiliary input (e.g. spectrogram), by default 80
dropout : float, optional
Probability of the dropout before the 1D convolution, by default 0.
dilation : int, optional
Dilation of the 1D convolution, by default 1
bias : bool, optional
Whether to use bias in the 1D convolution, by default True
use_causal_conv : bool, optional
Whether to use causal padding for the 1D convolution, by default False
"""
def __init__(self,
kernel_size: int=3,
residual_channels: int=64,
gate_channels: int=128,
skip_channels: int=64,
aux_channels: int=80,
dropout: float=0.,
dilation: int=1,
bias: bool=True,
use_causal_conv: bool=False):
super().__init__()
self.dropout = dropout
if use_causal_conv:
padding = (kernel_size - 1) * dilation
else:
assert kernel_size % 2 == 1
padding = (kernel_size - 1) // 2 * dilation
self.use_causal_conv = use_causal_conv
self.conv = nn.Conv1D(
residual_channels,
gate_channels,
kernel_size,
padding=padding,
dilation=dilation,
bias_attr=bias)
if aux_channels is not None:
self.conv1x1_aux = nn.Conv1D(
aux_channels, gate_channels, kernel_size=1, bias_attr=False)
else:
self.conv1x1_aux = None
gate_out_channels = gate_channels // 2
self.conv1x1_out = nn.Conv1D(
gate_out_channels, residual_channels, kernel_size=1, bias_attr=bias)
self.conv1x1_skip = nn.Conv1D(
gate_out_channels, skip_channels, kernel_size=1, bias_attr=bias)
def forward(self, x, c):
"""
Parameters
----------
x : Tensor
Shape (N, C_res, T), the input features.
c : Tensor
Shape (N, C_aux, T), the auxiliary input.
Returns
-------
res : Tensor
Shape (N, C_res, T), the residual output, which is used as the
input of the next ResidualBlock in a stack of ResidualBlocks.
skip : Tensor
Shape (N, C_skip, T), the skip output, which is collected among
each layer in a stack of ResidualBlocks.
"""
x_input = x
x = F.dropout(x, self.dropout, training=self.training)
x = self.conv(x)
x = x[:, :, x_input.shape[-1]] if self.use_causal_conv else x
if c is not None:
c = self.conv1x1_aux(c)
x += c
a, b = paddle.chunk(x, 2, axis=1)
x = paddle.tanh(a) * F.sigmoid(b)
skip = self.conv1x1_skip(x)
res = (self.conv1x1_out(x) + x_input) * math.sqrt(0.5)
return res, skip
class PWGGenerator(nn.Layer):
"""Wave Generator for Parallel WaveGAN
Parameters
----------
in_channels : int, optional
Number of channels of the input waveform, by default 1
out_channels : int, optional
Number of channels of the output waveform, by default 1
kernel_size : int, optional
Kernel size of the residual blocks inside, by default 3
layers : int, optional
Number of residual blocks inside, by default 30
stacks : int, optional
The number of groups to split the residual blocks into, by default 3
Within each group, the dilation of the residual block grows
exponentially.
residual_channels : int, optional
Residual channel of the residual blocks, by default 64
gate_channels : int, optional
Gate channel of the residual blocks, by default 128
skip_channels : int, optional
Skip channel of the residual blocks, by default 64
aux_channels : int, optional
Auxiliary channel of the residual blocks, by default 80
aux_context_window : int, optional
The context window size of the first convolution applied to the
auxiliary input, by default 2
dropout : float, optional
Dropout of the residual blocks, by default 0.
bias : bool, optional
Whether to use bias in residual blocks, by default True
use_weight_norm : bool, optional
Whether to use weight norm in all convolutions, by default True
use_causal_conv : bool, optional
Whether to use causal padding in the upsample network and residual
blocks, by default False
upsample_scales : List[int], optional
Upsample scales of the upsample network, by default [4, 4, 4, 4]
nonlinear_activation : Optional[str], optional
Non linear activation in upsample network, by default None
nonlinear_activation_params : Dict[str, Any], optional
Parameters passed to the linear activation in the upsample network,
by default {}
interpolate_mode : str, optional
Interpolation mode of the upsample network, by default "nearest"
freq_axis_kernel_size : int, optional
Kernel size along the frequency axis of the upsample network, by default 1
"""
def __init__(self,
in_channels: int=1,
out_channels: int=1,
kernel_size: int=3,
layers: int=30,
stacks: int=3,
residual_channels: int=64,
gate_channels: int=128,
skip_channels: int=64,
aux_channels: int=80,
aux_context_window: int=2,
dropout: float=0.,
bias: bool=True,
use_weight_norm: bool=True,
use_causal_conv: bool=False,
upsample_scales: List[int]=[4, 4, 4, 4],
nonlinear_activation: Optional[str]=None,
nonlinear_activation_params: Dict[str, Any]={},
interpolate_mode: str="nearest",
freq_axis_kernel_size: int=1):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.aux_channels = aux_channels
self.aux_context_window = aux_context_window
self.layers = layers
self.stacks = stacks
self.kernel_size = kernel_size
assert layers % stacks == 0
layers_per_stack = layers // stacks
self.first_conv = nn.Conv1D(
in_channels, residual_channels, 1, bias_attr=True)
self.upsample_net = ConvInUpsampleNet(
upsample_scales=upsample_scales,
nonlinear_activation=nonlinear_activation,
nonlinear_activation_params=nonlinear_activation_params,
interpolate_mode=interpolate_mode,
freq_axis_kernel_size=freq_axis_kernel_size,
aux_channels=aux_channels,
aux_context_window=aux_context_window,
use_causal_conv=use_causal_conv)
self.upsample_factor = np.prod(upsample_scales)
self.conv_layers = nn.LayerList()
for layer in range(layers):
dilation = 2**(layer % layers_per_stack)
conv = ResidualBlock(
kernel_size=kernel_size,
residual_channels=residual_channels,
gate_channels=gate_channels,
skip_channels=skip_channels,
aux_channels=aux_channels,
dilation=dilation,
dropout=dropout,
bias=bias,
use_causal_conv=use_causal_conv)
self.conv_layers.append(conv)
self.last_conv_layers = nn.Sequential(nn.ReLU(),
nn.Conv1D(
skip_channels,
skip_channels,
1,
bias_attr=True),
nn.ReLU(),
nn.Conv1D(
skip_channels,
out_channels,
1,
bias_attr=True))
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x, c):
"""Generate waveform.
Parameters
----------
x : Tensor
Shape (N, C_in, T), The input waveform.
c : Tensor
Shape (N, C_aux, T'). The auxiliary input (e.g. spectrogram). It
is upsampled to match the time resolution of the input.
Returns
-------
Tensor
Shape (N, C_out, T), the generated waveform.
"""
c = self.upsample_net(c)
assert c.shape[-1] == x.shape[-1]
x = self.first_conv(x)
skips = 0
for f in self.conv_layers:
x, s = f(x, c)
skips += s
skips *= math.sqrt(1.0 / len(self.conv_layers))
x = self.last_conv_layers(skips)
return x
def apply_weight_norm(self):
"""Recursively apply weight normalization to all the Convolution layers
in the sublayers.
"""
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
"""Recursively remove weight normalization from all the Convolution
layers in the sublayers.
"""
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)
def inference(self, c=None):
"""Waveform generation. This function is used for single instance
inference.
Parameters
----------
c : Tensor, optional
Shape (T', C_aux), the auxiliary input, by default None
x : Tensor, optional
Shape (T, C_in), the noise waveform, by default None
If not provided, a sample is drawn from a gaussian distribution.
Returns
-------
Tensor
Shape (T, C_out), the generated waveform
"""
# when to static, can not input x, see https://github.com/PaddlePaddle/Parakeet/pull/132/files
x = paddle.randn(
[1, self.in_channels, paddle.shape(c)[0] * self.upsample_factor])
c = paddle.transpose(c, [1, 0]).unsqueeze(0) # pseudo batch
c = nn.Pad1D(self.aux_context_window, mode='replicate')(c)
out = self(x, c).squeeze(0).transpose([1, 0])
return out
class PWGDiscriminator(nn.Layer):
"""A convolutional discriminator for audio.
Parameters
----------
in_channels : int, optional
Number of channels of the input audio, by default 1
out_channels : int, optional
Output feature size, by default 1
kernel_size : int, optional
Kernel size of convolutional sublayers, by default 3
layers : int, optional
Number of layers, by default 10
conv_channels : int, optional
Feature size of the convolutional sublayers, by default 64
dilation_factor : int, optional
The factor with which dilation of each convolutional sublayers grows
exponentially if it is greater than 1, else the dilation of each
convolutional sublayers grows linearly, by default 1
nonlinear_activation : str, optional
The activation after each convolutional sublayer, by default "LeakyReLU"
nonlinear_activation_params : Dict[str, Any], optional
The parameters passed to the activation's initializer, by default
{"negative_slope": 0.2}
bias : bool, optional
Whether to use bias in convolutional sublayers, by default True
use_weight_norm : bool, optional
Whether to use weight normalization at all convolutional sublayers,
by default True
"""
def __init__(
self,
in_channels: int=1,
out_channels: int=1,
kernel_size: int=3,
layers: int=10,
conv_channels: int=64,
dilation_factor: int=1,
nonlinear_activation: str="LeakyReLU",
nonlinear_activation_params: Dict[str, Any]={"negative_slope": 0.2},
bias: bool=True,
use_weight_norm: bool=True):
super().__init__()
assert kernel_size % 2 == 1
assert dilation_factor > 0
conv_layers = []
conv_in_channels = in_channels
for i in range(layers - 1):
if i == 0:
dilation = 1
else:
dilation = i if dilation_factor == 1 else dilation_factor**i
conv_in_channels = conv_channels
padding = (kernel_size - 1) // 2 * dilation
conv_layer = nn.Conv1D(
conv_in_channels,
conv_channels,
kernel_size,
padding=padding,
dilation=dilation,
bias_attr=bias)
nonlinear = getattr(
nn, nonlinear_activation)(**nonlinear_activation_params)
conv_layers.append(conv_layer)
conv_layers.append(nonlinear)
padding = (kernel_size - 1) // 2
last_conv = nn.Conv1D(
conv_in_channels,
out_channels,
kernel_size,
padding=padding,
bias_attr=bias)
conv_layers.append(last_conv)
self.conv_layers = nn.Sequential(*conv_layers)
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x):
"""
Parameters
----------
x : Tensor
Shape (N, in_channels, num_samples), the input audio.
Returns
-------
Tensor
Shape (N, out_channels, num_samples), the predicted logits.
"""
return self.conv_layers(x)
def apply_weight_norm(self):
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)
class ResidualPWGDiscriminator(nn.Layer):
"""A wavenet-style discriminator for audio.
Parameters
----------
in_channels : int, optional
Number of channels of the input audio, by default 1
out_channels : int, optional
Output feature size, by default 1
kernel_size : int, optional
Kernel size of residual blocks, by default 3
layers : int, optional
Number of residual blocks, by default 30
stacks : int, optional
Number of groups of residual blocks, within which the dilation
of each residual blocks grows exponentially, by default 3
residual_channels : int, optional
Residual channels of residual blocks, by default 64
gate_channels : int, optional
Gate channels of residual blocks, by default 128
skip_channels : int, optional
Skip channels of residual blocks, by default 64
dropout : float, optional
Dropout probability of residual blocks, by default 0.
bias : bool, optional
Whether to use bias in residual blocks, by default True
use_weight_norm : bool, optional
Whether to use weight normalization in all convolutional layers,
by default True
use_causal_conv : bool, optional
Whether to use causal convolution in residual blocks, by default False
nonlinear_activation : str, optional
Activation after convolutions other than those in residual blocks,
by default "LeakyReLU"
nonlinear_activation_params : Dict[str, Any], optional
Parameters to pass to the activation, by default {"negative_slope": 0.2}
"""
def __init__(self,
in_channels: int=1,
out_channels: int=1,
kernel_size: int=3,
layers: int=30,
stacks: int=3,
residual_channels: int=64,
gate_channels: int=128,
skip_channels: int=64,
dropout: float=0.,
bias: bool=True,
use_weight_norm: bool=True,
use_causal_conv: bool=False,
nonlinear_activation: str="LeakyReLU",
nonlinear_activation_params: Dict[
str, Any]={"negative_slope": 0.2}):
super().__init__()
assert kernel_size % 2 == 1
self.in_channels = in_channels
self.out_channels = out_channels
self.layers = layers
self.stacks = stacks
self.kernel_size = kernel_size
assert layers % stacks == 0
layers_per_stack = layers // stacks
self.first_conv = nn.Sequential(
nn.Conv1D(in_channels, residual_channels, 1, bias_attr=True),
getattr(nn, nonlinear_activation)(**nonlinear_activation_params))
self.conv_layers = nn.LayerList()
for layer in range(layers):
dilation = 2**(layer % layers_per_stack)
conv = ResidualBlock(
kernel_size=kernel_size,
residual_channels=residual_channels,
gate_channels=gate_channels,
skip_channels=skip_channels,
aux_channels=None, # no auxiliary input
dropout=dropout,
dilation=dilation,
bias=bias,
use_causal_conv=use_causal_conv)
self.conv_layers.append(conv)
self.last_conv_layers = nn.Sequential(
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
nn.Conv1D(skip_channels, skip_channels, 1, bias_attr=True),
getattr(nn, nonlinear_activation)(**nonlinear_activation_params),
nn.Conv1D(skip_channels, out_channels, 1, bias_attr=True))
if use_weight_norm:
self.apply_weight_norm()
def forward(self, x):
"""
Parameters
----------
x : Tensor
Shape (N, in_channels, num_samples), the input audio.
Returns
-------
Tensor
Shape (N, out_channels, num_samples), the predicted logits.
"""
x = self.first_conv(x)
skip = 0
for f in self.conv_layers:
x, h = f(x, None)
skip += h
skip *= math.sqrt(1 / len(self.conv_layers))
x = skip
x = self.last_conv_layers(x)
return x
def apply_weight_norm(self):
def _apply_weight_norm(layer):
if isinstance(layer, (nn.Conv1D, nn.Conv2D)):
nn.utils.weight_norm(layer)
self.apply(_apply_weight_norm)
def remove_weight_norm(self):
def _remove_weight_norm(layer):
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
pass
self.apply(_remove_weight_norm)
class PWGInference(nn.Layer):
def __init__(self, normalizer, pwg_generator):
super().__init__()
self.normalizer = normalizer
self.pwg_generator = pwg_generator
def forward(self, logmel):
normalized_mel = self.normalizer(logmel)
wav = self.pwg_generator.inference(normalized_mel)
return wav