|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
|
|
"""StyleMelGAN's TADEResBlock Modules."""
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
|
|
|
|
class TADELayer(nn.Layer):
|
|
|
|
"""TADE Layer module."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_channels: int=64,
|
|
|
|
aux_channels: int=80,
|
|
|
|
kernel_size: int=9,
|
|
|
|
bias: bool=True,
|
|
|
|
upsample_factor: int=2,
|
|
|
|
upsample_mode: str="nearest", ):
|
|
|
|
"""Initilize TADE layer."""
|
|
|
|
super().__init__()
|
|
|
|
self.norm = nn.InstanceNorm1D(
|
|
|
|
in_channels,
|
|
|
|
momentum=0.1,
|
|
|
|
data_format="NCL",
|
|
|
|
weight_attr=False,
|
|
|
|
bias_attr=False)
|
|
|
|
self.aux_conv = nn.Sequential(
|
|
|
|
nn.Conv1D(
|
|
|
|
aux_channels,
|
|
|
|
in_channels,
|
|
|
|
kernel_size,
|
|
|
|
1,
|
|
|
|
bias_attr=bias,
|
|
|
|
padding=(kernel_size - 1) // 2, ), )
|
|
|
|
self.gated_conv = nn.Sequential(
|
|
|
|
nn.Conv1D(
|
|
|
|
in_channels,
|
|
|
|
in_channels * 2,
|
|
|
|
kernel_size,
|
|
|
|
1,
|
|
|
|
bias_attr=bias,
|
|
|
|
padding=(kernel_size - 1) // 2, ), )
|
|
|
|
self.upsample = nn.Upsample(
|
|
|
|
scale_factor=upsample_factor, mode=upsample_mode)
|
|
|
|
|
|
|
|
def forward(self, x, c):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
|
|
x (Tensor):
|
|
|
|
Input tensor (B, in_channels, T).
|
|
|
|
c (Tensor):
|
|
|
|
Auxiliary input tensor (B, aux_channels, T).
|
|
|
|
Returns:
|
|
|
|
Tensor:
|
|
|
|
Output tensor (B, in_channels, T * upsample_factor).
|
|
|
|
Tensor:
|
|
|
|
Upsampled aux tensor (B, in_channels, T * upsample_factor).
|
|
|
|
"""
|
|
|
|
|
|
|
|
x = self.norm(x)
|
|
|
|
# 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
|
|
|
|
c = self.upsample(c.unsqueeze(-1))
|
|
|
|
c = c[:, :, :, 0]
|
|
|
|
|
|
|
|
c = self.aux_conv(c)
|
|
|
|
cg = self.gated_conv(c)
|
|
|
|
cg1, cg2 = cg.split(2, axis=1)
|
|
|
|
# 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
|
|
|
|
y = cg1 * self.upsample(x.unsqueeze(-1))[:, :, :, 0] + cg2
|
|
|
|
return y, c
|
|
|
|
|
|
|
|
|
|
|
|
class TADEResBlock(nn.Layer):
|
|
|
|
"""TADEResBlock module."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_channels: int=64,
|
|
|
|
aux_channels: int=80,
|
|
|
|
kernel_size: int=9,
|
|
|
|
dilation: int=2,
|
|
|
|
bias: bool=True,
|
|
|
|
upsample_factor: int=2,
|
|
|
|
# this is a diff in paddle, the mode only can be "linear" when input is 3D
|
|
|
|
upsample_mode: str="nearest",
|
|
|
|
gated_function: str="softmax", ):
|
|
|
|
"""Initialize TADEResBlock module."""
|
|
|
|
super().__init__()
|
|
|
|
self.tade1 = TADELayer(
|
|
|
|
in_channels=in_channels,
|
|
|
|
aux_channels=aux_channels,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
bias=bias,
|
|
|
|
upsample_factor=1,
|
|
|
|
upsample_mode=upsample_mode, )
|
|
|
|
self.gated_conv1 = nn.Conv1D(
|
|
|
|
in_channels,
|
|
|
|
in_channels * 2,
|
|
|
|
kernel_size,
|
|
|
|
1,
|
|
|
|
bias_attr=bias,
|
|
|
|
padding=(kernel_size - 1) // 2, )
|
|
|
|
self.tade2 = TADELayer(
|
|
|
|
in_channels=in_channels,
|
|
|
|
aux_channels=in_channels,
|
|
|
|
kernel_size=kernel_size,
|
|
|
|
bias=bias,
|
|
|
|
upsample_factor=upsample_factor,
|
|
|
|
upsample_mode=upsample_mode, )
|
|
|
|
self.gated_conv2 = nn.Conv1D(
|
|
|
|
in_channels,
|
|
|
|
in_channels * 2,
|
|
|
|
kernel_size,
|
|
|
|
1,
|
|
|
|
bias_attr=bias,
|
|
|
|
dilation=dilation,
|
|
|
|
padding=(kernel_size - 1) // 2 * dilation, )
|
|
|
|
self.upsample = nn.Upsample(
|
|
|
|
scale_factor=upsample_factor, mode=upsample_mode)
|
|
|
|
if gated_function == "softmax":
|
|
|
|
self.gated_function = partial(F.softmax, axis=1)
|
|
|
|
elif gated_function == "sigmoid":
|
|
|
|
self.gated_function = F.sigmoid
|
|
|
|
else:
|
|
|
|
raise ValueError(f"{gated_function} is not supported.")
|
|
|
|
|
|
|
|
def forward(self, x, c):
|
|
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
|
|
|
|
|
|
x (Tensor):
|
|
|
|
Input tensor (B, in_channels, T).
|
|
|
|
c (Tensor):
|
|
|
|
Auxiliary input tensor (B, aux_channels, T).
|
|
|
|
Returns:
|
|
|
|
Tensor:
|
|
|
|
Output tensor (B, in_channels, T * upsample_factor).
|
|
|
|
Tensor:
|
|
|
|
Upsampled auxirialy tensor (B, in_channels, T * upsample_factor).
|
|
|
|
"""
|
|
|
|
residual = x
|
|
|
|
x, c = self.tade1(x, c)
|
|
|
|
x = self.gated_conv1(x)
|
|
|
|
xa, xb = x.split(2, axis=1)
|
|
|
|
x = self.gated_function(xa) * F.tanh(xb)
|
|
|
|
x, c = self.tade2(x, c)
|
|
|
|
x = self.gated_conv2(x)
|
|
|
|
xa, xb = x.split(2, axis=1)
|
|
|
|
x = self.gated_function(xa) * F.tanh(xb)
|
|
|
|
# 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
|
|
|
|
return self.upsample(residual.unsqueeze(-1))[:, :, :, 0] + x, c
|