You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/parakeet/models/transformer_tts/transformer_tts_updater.py

324 lines
14 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Sequence
import paddle
from paddle import distributed as dist
from parakeet.models.transformer_tts import GuidedMultiHeadAttentionLoss
from parakeet.models.transformer_tts import TransformerTTSLoss
from parakeet.training.extensions.evaluator import StandardEvaluator
from parakeet.training.reporter import report
from parakeet.training.updaters.standard_updater import StandardUpdater
logging.basicConfig(
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='[%Y-%m-%d %H:%M:%S]')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class TransformerTTSUpdater(StandardUpdater):
def __init__(
self,
model,
optimizer,
dataloader,
init_state=None,
use_masking=False,
use_weighted_masking=False,
output_dir=None,
bce_pos_weight=5.0,
loss_type: str="L1",
use_guided_attn_loss: bool=True,
modules_applied_guided_attn: Sequence[str]=("encoder-decoder"),
guided_attn_loss_sigma: float=0.4,
guided_attn_loss_lambda: float=1.0, ):
super().__init__(model, optimizer, dataloader, init_state=None)
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
self.bce_pos_weight = bce_pos_weight
self.loss_type = loss_type
self.use_guided_attn_loss = use_guided_attn_loss
self.guided_attn_loss_sigma = guided_attn_loss_sigma
self.guided_attn_loss_lambda = guided_attn_loss_lambda
self.modules_applied_guided_attn = modules_applied_guided_attn
self.criterion = TransformerTTSLoss(
use_masking=self.use_masking,
use_weighted_masking=self.use_weighted_masking,
bce_pos_weight=self.bce_pos_weight)
if self.use_guided_attn_loss:
self.attn_criterion = GuidedMultiHeadAttentionLoss(
sigma=self.guided_attn_loss_sigma,
alpha=self.guided_attn_loss_lambda, )
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def update_core(self, batch):
self.msg = "Rank: {}, ".format(dist.get_rank())
losses_dict = {}
after_outs, before_outs, logits, ys, labels, olens, ilens, need_dict = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
speech=batch["speech"],
speech_lengths=batch["speech_lengths"], )
l1_loss, l2_loss, bce_loss = self.criterion(
after_outs=after_outs,
before_outs=before_outs,
logits=logits,
ys=ys,
labels=labels,
olens=olens)
report("train/bce_loss", float(bce_loss))
report("train/l1_loss", float(l1_loss))
report("train/l2_loss", float(l2_loss))
losses_dict["bce_loss"] = float(bce_loss)
losses_dict["l1_loss"] = float(l1_loss)
losses_dict["l2_loss"] = float(l2_loss)
# caluculate loss values
if self.loss_type == "L1":
loss = l1_loss + bce_loss
elif self.loss_type == "L2":
loss = l2_loss + bce_loss
elif self.loss_type == "L1+L2":
loss = l1_loss + l2_loss + bce_loss
else:
raise ValueError("unknown --loss-type " + self.loss_type)
# calculate guided attention loss
if self.use_guided_attn_loss:
# calculate for encoder
if "encoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(need_dict['encoder'].encoders)))):
att_ws += [
need_dict['encoder'].encoders[layer_idx].self_attn.
attn[:, :need_dict['num_heads_applied_guided_attn']]
]
if idx + 1 == need_dict['num_layers_applied_guided_attn']:
break
# (B, H*L, T_in, T_in)
att_ws = paddle.concat(att_ws, axis=1)
enc_attn_loss = self.attn_criterion(att_ws, ilens, ilens)
loss = loss + enc_attn_loss
report("train/enc_attn_loss", float(enc_attn_loss))
losses_dict["enc_attn_loss"] = float(enc_attn_loss)
# calculate for decoder
if "decoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(need_dict['decoder'].decoders)))):
att_ws += [
need_dict['decoder'].decoders[layer_idx].self_attn.
attn[:, :need_dict['num_heads_applied_guided_attn']]
]
if idx + 1 == need_dict['num_layers_applied_guided_attn']:
break
# (B, H*L, T_out, T_out)
att_ws = paddle.concat(att_ws, axis=1)
dec_attn_loss = self.attn_criterion(att_ws, olens, olens)
report("train/dec_attn_loss", float(dec_attn_loss))
losses_dict["dec_attn_loss"] = float(dec_attn_loss)
loss = loss + dec_attn_loss
# calculate for encoder-decoder
if "encoder-decoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(need_dict['decoder'].decoders)))):
att_ws += [
need_dict['decoder'].decoders[layer_idx].src_attn.
attn[:, :need_dict['num_heads_applied_guided_attn']]
]
if idx + 1 == need_dict['num_layers_applied_guided_attn']:
break
# (B, H*L, T_out, T_in)
att_ws = paddle.concat(att_ws, axis=1)
enc_dec_attn_loss = self.attn_criterion(att_ws, ilens, olens)
report("train/enc_dec_attn_loss", float(enc_dec_attn_loss))
losses_dict["enc_dec_attn_loss"] = float(enc_dec_attn_loss)
loss = loss + enc_dec_attn_loss
if need_dict['use_scaled_pos_enc']:
report("train/encoder_alpha",
float(need_dict['encoder'].embed[-1].alpha))
report("train/decoder_alpha",
float(need_dict['decoder'].embed[-1].alpha))
losses_dict["encoder_alpha"] = float(
need_dict['encoder'].embed[-1].alpha)
losses_dict["decoder_alpha"] = float(
need_dict['decoder'].embed[-1].alpha)
optimizer = self.optimizer
optimizer.clear_grad()
loss.backward()
optimizer.step()
report("train/loss", float(loss))
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
class TransformerTTSEvaluator(StandardEvaluator):
def __init__(
self,
model,
dataloader,
init_state=None,
use_masking=False,
use_weighted_masking=False,
output_dir=None,
bce_pos_weight=5.0,
loss_type: str="L1",
use_guided_attn_loss: bool=True,
modules_applied_guided_attn: Sequence[str]=("encoder-decoder"),
guided_attn_loss_sigma: float=0.4,
guided_attn_loss_lambda: float=1.0, ):
super().__init__(model, dataloader)
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
self.bce_pos_weight = bce_pos_weight
self.loss_type = loss_type
self.use_guided_attn_loss = use_guided_attn_loss
self.guided_attn_loss_sigma = guided_attn_loss_sigma
self.guided_attn_loss_lambda = guided_attn_loss_lambda
self.modules_applied_guided_attn = modules_applied_guided_attn
self.criterion = TransformerTTSLoss(
use_masking=self.use_masking,
use_weighted_masking=self.use_weighted_masking,
bce_pos_weight=self.bce_pos_weight)
if self.use_guided_attn_loss:
self.attn_criterion = GuidedMultiHeadAttentionLoss(
sigma=self.guided_attn_loss_sigma,
alpha=self.guided_attn_loss_lambda, )
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
self.filehandler = logging.FileHandler(str(log_file))
logger.addHandler(self.filehandler)
self.logger = logger
self.msg = ""
def evaluate_core(self, batch):
self.msg = "Evaluate: "
losses_dict = {}
after_outs, before_outs, logits, ys, labels, olens, ilens, need_dict = self.model(
text=batch["text"],
text_lengths=batch["text_lengths"],
speech=batch["speech"],
speech_lengths=batch["speech_lengths"])
l1_loss, l2_loss, bce_loss = self.criterion(
after_outs=after_outs,
before_outs=before_outs,
logits=logits,
ys=ys,
labels=labels,
olens=olens)
report("eval/bce_loss", float(bce_loss))
report("eval/l1_loss", float(l1_loss))
report("eval/l2_loss", float(l2_loss))
losses_dict["bce_loss"] = float(bce_loss)
losses_dict["l1_loss"] = float(l1_loss)
losses_dict["l2_loss"] = float(l2_loss)
# caluculate loss values
if self.loss_type == "L1":
loss = l1_loss + bce_loss
elif self.loss_type == "L2":
loss = l2_loss + bce_loss
elif self.loss_type == "L1+L2":
loss = l1_loss + l2_loss + bce_loss
else:
raise ValueError("unknown --loss-type " + self.loss_type)
# calculate guided attention loss
if self.use_guided_attn_loss:
# calculate for encoder
if "encoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(need_dict['encoder'].encoders)))):
att_ws += [
need_dict['encoder'].encoders[layer_idx].self_attn.
attn[:, :need_dict['num_heads_applied_guided_attn']]
]
if idx + 1 == need_dict['num_layers_applied_guided_attn']:
break
# (B, H*L, T_in, T_in)
att_ws = paddle.concat(att_ws, axis=1)
enc_attn_loss = self.attn_criterion(att_ws, ilens, ilens)
loss = loss + enc_attn_loss
report("train/enc_attn_loss", float(enc_attn_loss))
losses_dict["enc_attn_loss"] = float(enc_attn_loss)
# calculate for decoder
if "decoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(need_dict['decoder'].decoders)))):
att_ws += [
need_dict['decoder'].decoders[layer_idx].self_attn.
attn[:, :need_dict['num_heads_applied_guided_attn']]
]
if idx + 1 == need_dict['num_layers_applied_guided_attn']:
break
# (B, H*L, T_out, T_out)
att_ws = paddle.concat(att_ws, axis=1)
dec_attn_loss = self.attn_criterion(att_ws, olens, olens)
report("eval/dec_attn_loss", float(dec_attn_loss))
losses_dict["dec_attn_loss"] = float(dec_attn_loss)
loss = loss + dec_attn_loss
# calculate for encoder-decoder
if "encoder-decoder" in self.modules_applied_guided_attn:
att_ws = []
for idx, layer_idx in enumerate(
reversed(range(len(need_dict['decoder'].decoders)))):
att_ws += [
need_dict['decoder'].decoders[layer_idx].src_attn.
attn[:, :need_dict['num_heads_applied_guided_attn']]
]
if idx + 1 == need_dict['num_layers_applied_guided_attn']:
break
# (B, H*L, T_out, T_in)
att_ws = paddle.concat(att_ws, axis=1)
enc_dec_attn_loss = self.attn_criterion(att_ws, ilens, olens)
report("eval/enc_dec_attn_loss", float(enc_dec_attn_loss))
losses_dict["enc_dec_attn_loss"] = float(enc_dec_attn_loss)
loss = loss + enc_dec_attn_loss
if need_dict['use_scaled_pos_enc']:
report("eval/encoder_alpha",
float(need_dict['encoder'].embed[-1].alpha))
report("eval/decoder_alpha",
float(need_dict['decoder'].embed[-1].alpha))
losses_dict["encoder_alpha"] = float(
need_dict['encoder'].embed[-1].alpha)
losses_dict["decoder_alpha"] = float(
need_dict['decoder'].embed[-1].alpha)
report("eval/loss", float(loss))
losses_dict["loss"] = float(loss)
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in losses_dict.items())
self.logger.info(self.msg)