You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
5.5 KiB
161 lines
5.5 KiB
3 years ago
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import time
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
from paddle import distributed as dist
|
||
3 years ago
|
from paddle.io import DataLoader
|
||
|
from paddle.io import DistributedBatchSampler
|
||
3 years ago
|
|
||
|
from parakeet.data import dataset
|
||
3 years ago
|
from parakeet.exps.waveflow.config import get_cfg_defaults
|
||
|
from parakeet.exps.waveflow.ljspeech import LJSpeech
|
||
|
from parakeet.exps.waveflow.ljspeech import LJSpeechClipCollector
|
||
|
from parakeet.exps.waveflow.ljspeech import LJSpeechCollector
|
||
|
from parakeet.models.waveflow import ConditionalWaveFlow
|
||
|
from parakeet.models.waveflow import WaveFlowLoss
|
||
3 years ago
|
from parakeet.training.cli import default_argument_parser
|
||
|
from parakeet.training.experiment import ExperimentBase
|
||
3 years ago
|
from parakeet.utils import mp_tools
|
||
3 years ago
|
|
||
|
|
||
|
class Experiment(ExperimentBase):
|
||
|
def setup_model(self):
|
||
|
config = self.config
|
||
|
model = ConditionalWaveFlow(
|
||
|
upsample_factors=config.model.upsample_factors,
|
||
|
n_flows=config.model.n_flows,
|
||
|
n_layers=config.model.n_layers,
|
||
|
n_group=config.model.n_group,
|
||
|
channels=config.model.channels,
|
||
|
n_mels=config.data.n_mels,
|
||
|
kernel_size=config.model.kernel_size)
|
||
|
|
||
|
if self.parallel:
|
||
|
model = paddle.DataParallel(model)
|
||
|
optimizer = paddle.optimizer.Adam(
|
||
|
config.training.lr, parameters=model.parameters())
|
||
|
criterion = WaveFlowLoss(sigma=config.model.sigma)
|
||
|
|
||
|
self.model = model
|
||
|
self.optimizer = optimizer
|
||
|
self.criterion = criterion
|
||
|
|
||
|
def setup_dataloader(self):
|
||
|
config = self.config
|
||
|
args = self.args
|
||
|
|
||
|
ljspeech_dataset = LJSpeech(args.data)
|
||
|
valid_set, train_set = dataset.split(ljspeech_dataset,
|
||
|
config.data.valid_size)
|
||
|
|
||
|
batch_fn = LJSpeechClipCollector(config.data.clip_frames,
|
||
|
config.data.hop_length)
|
||
|
|
||
|
if not self.parallel:
|
||
|
train_loader = DataLoader(
|
||
|
train_set,
|
||
|
batch_size=config.data.batch_size,
|
||
|
shuffle=True,
|
||
|
drop_last=True,
|
||
|
collate_fn=batch_fn)
|
||
|
else:
|
||
|
sampler = DistributedBatchSampler(
|
||
|
train_set,
|
||
|
batch_size=config.data.batch_size,
|
||
|
num_replicas=dist.get_world_size(),
|
||
|
rank=dist.get_rank(),
|
||
|
shuffle=True,
|
||
|
drop_last=True)
|
||
|
train_loader = DataLoader(
|
||
|
train_set, batch_sampler=sampler, collate_fn=batch_fn)
|
||
|
|
||
|
valid_batch_fn = LJSpeechCollector()
|
||
|
valid_loader = DataLoader(
|
||
|
valid_set, batch_size=1, collate_fn=valid_batch_fn)
|
||
|
|
||
|
self.train_loader = train_loader
|
||
|
self.valid_loader = valid_loader
|
||
|
|
||
|
def compute_outputs(self, mel, wav):
|
||
|
# model_core = model._layers if isinstance(model, paddle.DataParallel) else model
|
||
|
z, log_det_jocobian = self.model(wav, mel)
|
||
|
return z, log_det_jocobian
|
||
|
|
||
|
def train_batch(self):
|
||
|
start = time.time()
|
||
|
batch = self.read_batch()
|
||
|
data_loader_time = time.time() - start
|
||
|
|
||
|
self.model.train()
|
||
|
self.optimizer.clear_grad()
|
||
|
mel, wav = batch
|
||
|
z, log_det_jocobian = self.compute_outputs(mel, wav)
|
||
|
loss = self.criterion(z, log_det_jocobian)
|
||
|
loss.backward()
|
||
|
self.optimizer.step()
|
||
|
iteration_time = time.time() - start
|
||
|
|
||
|
loss_value = float(loss)
|
||
|
msg = "Rank: {}, ".format(dist.get_rank())
|
||
|
msg += "step: {}, ".format(self.iteration)
|
||
|
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
|
||
|
iteration_time)
|
||
|
msg += "loss: {:>.6f}".format(loss_value)
|
||
|
self.logger.info(msg)
|
||
|
if dist.get_rank() == 0:
|
||
|
self.visualizer.add_scalar("train/loss", loss_value, self.iteration)
|
||
|
|
||
|
@mp_tools.rank_zero_only
|
||
|
@paddle.no_grad()
|
||
|
def valid(self):
|
||
|
valid_iterator = iter(self.valid_loader)
|
||
|
valid_losses = []
|
||
|
mel, wav = next(valid_iterator)
|
||
|
z, log_det_jocobian = self.compute_outputs(mel, wav)
|
||
|
loss = self.criterion(z, log_det_jocobian)
|
||
|
valid_losses.append(float(loss))
|
||
|
valid_loss = np.mean(valid_losses)
|
||
|
self.visualizer.add_scalar("valid/loss", valid_loss, self.iteration)
|
||
|
|
||
|
|
||
|
def main_sp(config, args):
|
||
|
exp = Experiment(config, args)
|
||
|
exp.setup()
|
||
|
exp.resume_or_load()
|
||
|
exp.run()
|
||
|
|
||
|
|
||
|
def main(config, args):
|
||
|
if args.nprocs > 1 and args.device == "gpu":
|
||
|
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
|
||
|
else:
|
||
|
main_sp(config, args)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
config = get_cfg_defaults()
|
||
|
parser = default_argument_parser()
|
||
|
args = parser.parse_args()
|
||
|
if args.config:
|
||
|
config.merge_from_file(args.config)
|
||
|
if args.opts:
|
||
|
config.merge_from_list(args.opts)
|
||
|
config.freeze()
|
||
|
print(config)
|
||
|
print(args)
|
||
|
|
||
|
main(config, args)
|