|
|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
"""Mask module."""
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def subsequent_mask(size, dtype=paddle.bool):
|
|
|
|
|
"""Create mask for subsequent steps (size, size).
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
size (int): size of mask
|
|
|
|
|
dtype (paddle.dtype): result dtype
|
|
|
|
|
Return:
|
|
|
|
|
Tensor:
|
|
|
|
|
>>> subsequent_mask(3)
|
|
|
|
|
[[1, 0, 0],
|
|
|
|
|
[1, 1, 0],
|
|
|
|
|
[1, 1, 1]]
|
|
|
|
|
"""
|
|
|
|
|
ret = paddle.ones([size, size], dtype=dtype)
|
|
|
|
|
return paddle.tril(ret)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def target_mask(ys_in_pad, ignore_id, dtype=paddle.bool):
|
|
|
|
|
"""Create mask for decoder self-attention.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
ys_pad (Tensor): batch of padded target sequences (B, Lmax)
|
|
|
|
|
ignore_id (int): index of padding
|
|
|
|
|
dtype (paddle.dtype): result dtype
|
|
|
|
|
Return:
|
|
|
|
|
Tensor: (B, Lmax, Lmax)
|
|
|
|
|
"""
|
|
|
|
|
ys_mask = ys_in_pad != ignore_id
|
|
|
|
|
m = subsequent_mask(ys_mask.shape[-1]).unsqueeze(0)
|
|
|
|
|
return ys_mask.unsqueeze(-2) & m
|