You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/vad/nnet/vad_nnet_main.cc

85 lines
2.7 KiB

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "common/base/common.h"
#include "vad/nnet/vad.h"
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout << "Usage: vad_nnet_main path/to/model path/to/audio "
"run_option, "
"e.g ./vad_nnet_main silero_vad.onnx sample.wav"
<< std::endl;
return -1;
}
std::string model_file = argv[1];
std::string audio_file = argv[2];
int sr = 16000;
ppspeech::Vad vad(model_file);
// custom config, but must be set before init
vad.SetConfig(sr, 32, 0.5f, 0.15, 200, 0, 0);
vad.Init();
std::vector<float> inputWav; // [0, 1]
wav::WavReader wav_reader = wav::WavReader(audio_file);
assert(wav_reader.sample_rate() == sr);
auto num_samples = wav_reader.num_samples();
inputWav.resize(num_samples);
for (int i = 0; i < num_samples; i++) {
inputWav[i] = wav_reader.data()[i] / 32768;
}
ppspeech::Timer timer;
int window_size_samples = vad.WindowSizeSamples();
for (int64_t j = 0; j < num_samples; j += window_size_samples) {
auto start = j;
auto end = start + window_size_samples >= num_samples
? num_samples
: start + window_size_samples;
auto current_chunk_size = end - start;
std::vector<float> r{&inputWav[0] + start, &inputWav[0] + end};
assert(r.size() == static_cast<size_t>(current_chunk_size));
if (!vad.ForwardChunk(r)) {
std::cerr << "Failed to inference while using model:"
<< vad.ModelName() << "." << std::endl;
return false;
}
ppspeech::Vad::State s = vad.Postprocess();
std::cout << s << " ";
}
std::cout << std::endl;
std::cout << "RTF=" << timer.Elapsed() / double(num_samples / sr)
<< std::endl;
std::vector<std::map<std::string, float>> result = vad.GetResult();
for (auto& res : result) {
std::cout << "speak start: " << res["start"]
<< " s, end: " << res["end"] << " s | ";
}
std::cout << "\b\b " << std::endl;
vad.Reset();
return 0;
}