([简体中文](./README_cn.md)|English)
# ASR (Automatic Speech Recognition)
## Introduction
ASR, or Automatic Speech Recognition, refers to the problem of getting a program to automatically transcribe spoken language (speech-to-text).
This demo is an implementation to recognize text from a specific audio file. It can be done by a single command or a few lines in python using `PaddleSpeech` .
## Usage
### 1. Installation
see [installation ](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install.md ).
You can choose one way from easy, meduim and hard to install paddlespeech.
### 2. Prepare Input File
The input of this demo should be a WAV file(`.wav`), and the sample rate must be the same as the model.
Here are sample files for this demo that can be downloaded:
```bash
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
```
### 3. Usage
- Command Line(Recommended)
```bash
# Chinese
paddlespeech asr --input ./zh.wav -v
# English
paddlespeech asr --model transformer_librispeech --lang en --input ./en.wav -v
# Chinese ASR + Punctuation Restoration
paddlespeech asr --input ./zh.wav -v | paddlespeech text --task punc -v
```
(If you don't want to see the log information, you can remove "-v". Besides, it doesn't matter if package `paddlespeech-ctcdecoders` is not found, this package is optional.)
Usage:
```bash
paddlespeech asr --help
```
Arguments:
- `input` (required): Audio file to recognize.
- `model` : Model type of asr task. Default: `conformer_wenetspeech` .
- `lang` : Model language. Default: `zh` .
- `sample_rate` : Sample rate of the model. Default: `16000` .
- `config` : Config of asr task. Use pretrained model when it is None. Default: `None` .
- `ckpt_path` : Model checkpoint. Use pretrained model when it is None. Default: `None` .
- `yes` : No additional parameters required. Once set this parameter, it means accepting the request of the program by default, which includes transforming the audio sample rate. Default: `False` .
- `device` : Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
- `verbose` : Show the log information.
Output:
```bash
# Chinese
[2021-12-08 13:12:34,063] [ INFO] [utils.py] [L225] - ASR Result: 我认为跑步最重要的就是给我带来了身体健康
# English
[2022-01-12 11:51:10,815] [ INFO] - ASR Result: i knocked at the door on the ancient side of the building
```
- Python API
```python
import paddle
from paddlespeech.cli.asr import ASRExecutor
asr_executor = ASRExecutor()
text = asr_executor(
model='conformer_wenetspeech',
lang='zh',
sample_rate=16000,
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
ckpt_path=None,
audio_file='./zh.wav',
force_yes=False,
device=paddle.get_device())
print('ASR Result: \n{}'.format(text))
```
Output:
```bash
ASR Result:
我认为跑步最重要的就是给我带来了身体健康
```
### 4.Pretrained Models
Here is a list of pretrained models released by PaddleSpeech that can be used by command and python API:
| Model | Language | Sample Rate
| :--- | :---: | :---: |
| conformer_wenetspeech | zh | 16k
| conformer_online_multicn | zh | 16k
| conformer_aishell | zh | 16k
| conformer_online_aishell | zh | 16k
| transformer_librispeech | en | 16k
| deepspeech2online_wenetspeech | zh | 16k
| deepspeech2offline_aishell| zh| 16k
| deepspeech2online_aishell | zh | 16k
| deepspeech2offline_librispeech | en | 16k