|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Evaluation for U2 model."""
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import soundfile
|
|
|
|
|
|
|
|
from paddlespeech.s2t.exps.u2.config import get_cfg_defaults
|
|
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
|
|
from paddlespeech.s2t.models.u2 import U2Model
|
|
|
|
from paddlespeech.s2t.training.cli import default_argument_parser
|
|
|
|
from paddlespeech.s2t.transform.transformation import Transformation
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
# TODO(hui zhang): dynamic load
|
|
|
|
|
|
|
|
|
|
|
|
class U2Infer():
|
|
|
|
def __init__(self, config, args):
|
|
|
|
self.args = args
|
|
|
|
self.config = config
|
|
|
|
self.audio_file = args.audio_file
|
|
|
|
self.sr = config.collator.target_sample_rate
|
|
|
|
|
|
|
|
self.preprocess_conf = config.collator.augmentation_config
|
|
|
|
self.preprocess_args = {"train": False}
|
|
|
|
self.preprocessing = Transformation(self.preprocess_conf)
|
|
|
|
|
|
|
|
self.text_feature = TextFeaturizer(
|
|
|
|
unit_type=config.collator.unit_type,
|
|
|
|
vocab_filepath=config.collator.vocab_filepath,
|
|
|
|
spm_model_prefix=config.collator.spm_model_prefix)
|
|
|
|
|
|
|
|
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
|
|
|
|
|
|
|
|
# model
|
|
|
|
model_conf = config.model
|
|
|
|
with UpdateConfig(model_conf):
|
|
|
|
model_conf.input_dim = config.collator.feat_dim
|
|
|
|
model_conf.output_dim = self.text_feature.vocab_size
|
|
|
|
model = U2Model.from_config(model_conf)
|
|
|
|
self.model = model
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
# load model
|
|
|
|
params_path = self.args.checkpoint_path + ".pdparams"
|
|
|
|
model_dict = paddle.load(params_path)
|
|
|
|
self.model.set_state_dict(model_dict)
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
check(args.audio_file)
|
|
|
|
|
|
|
|
with paddle.no_grad():
|
|
|
|
# read
|
|
|
|
audio, sample_rate = soundfile.read(
|
|
|
|
self.audio_file, dtype="int16", always_2d=True)
|
|
|
|
if sample_rate != self.sr:
|
|
|
|
logger.error(
|
|
|
|
f"sample rate error: {sample_rate}, need {self.sr} ")
|
|
|
|
sys.exit(-1)
|
|
|
|
|
|
|
|
audio = audio[:, 0]
|
|
|
|
logger.info(f"audio shape: {audio.shape}")
|
|
|
|
|
|
|
|
# fbank
|
|
|
|
feat = self.preprocessing(audio, **self.preprocess_args)
|
|
|
|
logger.info(f"feat shape: {feat.shape}")
|
|
|
|
|
|
|
|
ilen = paddle.to_tensor(feat.shape[0])
|
|
|
|
xs = paddle.to_tensor(feat, dtype='float32').unsqueeze(axis=0)
|
|
|
|
|
|
|
|
cfg = self.config.decoding
|
|
|
|
result_transcripts = self.model.decode(
|
|
|
|
xs,
|
|
|
|
ilen,
|
|
|
|
text_feature=self.text_feature,
|
|
|
|
decoding_method=cfg.decoding_method,
|
|
|
|
lang_model_path=cfg.lang_model_path,
|
|
|
|
beam_alpha=cfg.alpha,
|
|
|
|
beam_beta=cfg.beta,
|
|
|
|
beam_size=cfg.beam_size,
|
|
|
|
cutoff_prob=cfg.cutoff_prob,
|
|
|
|
cutoff_top_n=cfg.cutoff_top_n,
|
|
|
|
num_processes=cfg.num_proc_bsearch,
|
|
|
|
ctc_weight=cfg.ctc_weight,
|
|
|
|
decoding_chunk_size=cfg.decoding_chunk_size,
|
|
|
|
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
|
|
|
|
simulate_streaming=cfg.simulate_streaming)
|
|
|
|
rsl = result_transcripts[0][0]
|
|
|
|
utt = Path(self.audio_file).name
|
|
|
|
logger.info(f"hyp: {utt} {result_transcripts[0][0]}")
|
|
|
|
return rsl
|
|
|
|
|
|
|
|
|
|
|
|
def check(audio_file):
|
|
|
|
if not os.path.isfile(audio_file):
|
|
|
|
print("Please input the right audio file path")
|
|
|
|
sys.exit(-1)
|
|
|
|
|
|
|
|
logger.info("checking the audio file format......")
|
|
|
|
try:
|
|
|
|
sig, sample_rate = soundfile.read(audio_file)
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(str(e))
|
|
|
|
logger.error(
|
|
|
|
"can not open the wav file, please check the audio file format")
|
|
|
|
sys.exit(-1)
|
|
|
|
logger.info("The sample rate is %d" % sample_rate)
|
|
|
|
assert (sample_rate == 16000)
|
|
|
|
logger.info("The audio file format is right")
|
|
|
|
|
|
|
|
|
|
|
|
def main(config, args):
|
|
|
|
U2Infer(config, args).run()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = default_argument_parser()
|
|
|
|
# save asr result to
|
|
|
|
parser.add_argument(
|
|
|
|
"--result_file", type=str, help="path of save the asr result")
|
|
|
|
parser.add_argument(
|
|
|
|
"--audio_file", type=str, help="path of the input audio file")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
config = get_cfg_defaults()
|
|
|
|
if args.config:
|
|
|
|
config.merge_from_file(args.config)
|
|
|
|
if args.opts:
|
|
|
|
config.merge_from_list(args.opts)
|
|
|
|
config.freeze()
|
|
|
|
main(config, args)
|