|
|
|
"""Server-end for the ASR demo."""
|
|
|
|
import os
|
|
|
|
import time
|
|
|
|
import random
|
|
|
|
import argparse
|
|
|
|
import functools
|
|
|
|
from time import gmtime, strftime
|
|
|
|
import SocketServer
|
|
|
|
import struct
|
|
|
|
import wave
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
import _init_paths
|
|
|
|
from data_utils.data import DataGenerator
|
|
|
|
from model_utils.model import DeepSpeech2Model
|
|
|
|
from data_utils.utility import read_manifest
|
|
|
|
from utils.utility import add_arguments, print_arguments
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description=__doc__)
|
|
|
|
add_arg = functools.partial(add_arguments, argparser=parser)
|
|
|
|
# yapf: disable
|
|
|
|
add_arg('host_port', int, 8086, "Server's IP port.")
|
|
|
|
add_arg('beam_size', int, 500, "Beam search width.")
|
|
|
|
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
|
|
|
|
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
|
|
|
|
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
|
|
|
|
add_arg('alpha', float, 2.5, "Coef of LM for beam search.")
|
|
|
|
add_arg('beta', float, 0.3, "Coef of WC for beam search.")
|
|
|
|
add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.")
|
|
|
|
add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.")
|
|
|
|
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
|
|
|
|
add_arg('use_gpu', bool, True, "Use GPU or not.")
|
|
|
|
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
|
|
|
|
"bi-directional RNNs. Not for GRU.")
|
|
|
|
add_arg('host_ip', str,
|
|
|
|
'localhost',
|
|
|
|
"Server's IP address.")
|
|
|
|
add_arg('speech_save_dir', str,
|
|
|
|
'demo_cache',
|
|
|
|
"Directory to save demo audios.")
|
|
|
|
add_arg('warmup_manifest', str,
|
|
|
|
'data/librispeech/manifest.test-clean',
|
|
|
|
"Filepath of manifest to warm up.")
|
|
|
|
add_arg('mean_std_path', str,
|
|
|
|
'data/librispeech/mean_std.npz',
|
|
|
|
"Filepath of normalizer's mean & std.")
|
|
|
|
add_arg('vocab_path', str,
|
|
|
|
'data/librispeech/eng_vocab.txt',
|
|
|
|
"Filepath of vocabulary.")
|
|
|
|
add_arg('model_path', str,
|
|
|
|
'./checkpoints/libri/params.latest.tar.gz',
|
|
|
|
"If None, the training starts from scratch, "
|
|
|
|
"otherwise, it resumes from the pre-trained model.")
|
|
|
|
add_arg('lang_model_path', str,
|
|
|
|
'lm/data/common_crawl_00.prune01111.trie.klm',
|
|
|
|
"Filepath for language model.")
|
|
|
|
add_arg('decoding_method', str,
|
|
|
|
'ctc_beam_search',
|
|
|
|
"Decoding method. Options: ctc_beam_search, ctc_greedy",
|
|
|
|
choices = ['ctc_beam_search', 'ctc_greedy'])
|
|
|
|
add_arg('specgram_type', str,
|
|
|
|
'linear',
|
|
|
|
"Audio feature type. Options: linear, mfcc.",
|
|
|
|
choices=['linear', 'mfcc'])
|
|
|
|
# yapf: disable
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
class AsrTCPServer(SocketServer.TCPServer):
|
|
|
|
"""The ASR TCP Server."""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
server_address,
|
|
|
|
RequestHandlerClass,
|
|
|
|
speech_save_dir,
|
|
|
|
audio_process_handler,
|
|
|
|
bind_and_activate=True):
|
|
|
|
self.speech_save_dir = speech_save_dir
|
|
|
|
self.audio_process_handler = audio_process_handler
|
|
|
|
SocketServer.TCPServer.__init__(
|
|
|
|
self, server_address, RequestHandlerClass, bind_and_activate=True)
|
|
|
|
|
|
|
|
|
|
|
|
class AsrRequestHandler(SocketServer.BaseRequestHandler):
|
|
|
|
"""The ASR request handler."""
|
|
|
|
|
|
|
|
def handle(self):
|
|
|
|
# receive data through TCP socket
|
|
|
|
chunk = self.request.recv(1024)
|
|
|
|
target_len = struct.unpack('>i', chunk[:4])[0]
|
|
|
|
data = chunk[4:]
|
|
|
|
while len(data) < target_len:
|
|
|
|
chunk = self.request.recv(1024)
|
|
|
|
data += chunk
|
|
|
|
# write to file
|
|
|
|
filename = self._write_to_file(data)
|
|
|
|
|
|
|
|
print("Received utterance[length=%d] from %s, saved to %s." %
|
|
|
|
(len(data), self.client_address[0], filename))
|
|
|
|
start_time = time.time()
|
|
|
|
transcript = self.server.audio_process_handler(filename)
|
|
|
|
finish_time = time.time()
|
|
|
|
print("Response Time: %f, Transcript: %s" %
|
|
|
|
(finish_time - start_time, transcript))
|
|
|
|
self.request.sendall(transcript.encode('utf-8'))
|
|
|
|
|
|
|
|
def _write_to_file(self, data):
|
|
|
|
# prepare save dir and filename
|
|
|
|
if not os.path.exists(self.server.speech_save_dir):
|
|
|
|
os.mkdir(self.server.speech_save_dir)
|
|
|
|
timestamp = strftime("%Y%m%d%H%M%S", gmtime())
|
|
|
|
out_filename = os.path.join(
|
|
|
|
self.server.speech_save_dir,
|
|
|
|
timestamp + "_" + self.client_address[0] + ".wav")
|
|
|
|
# write to wav file
|
|
|
|
file = wave.open(out_filename, 'wb')
|
|
|
|
file.setnchannels(1)
|
|
|
|
file.setsampwidth(4)
|
|
|
|
file.setframerate(16000)
|
|
|
|
file.writeframes(data)
|
|
|
|
file.close()
|
|
|
|
return out_filename
|
|
|
|
|
|
|
|
|
|
|
|
def warm_up_test(audio_process_handler,
|
|
|
|
manifest_path,
|
|
|
|
num_test_cases,
|
|
|
|
random_seed=0):
|
|
|
|
"""Warming-up test."""
|
|
|
|
manifest = read_manifest(manifest_path)
|
|
|
|
rng = random.Random(random_seed)
|
|
|
|
samples = rng.sample(manifest, num_test_cases)
|
|
|
|
for idx, sample in enumerate(samples):
|
|
|
|
print("Warm-up Test Case %d: %s", idx, sample['audio_filepath'])
|
|
|
|
start_time = time.time()
|
|
|
|
transcript = audio_process_handler(sample['audio_filepath'])
|
|
|
|
finish_time = time.time()
|
|
|
|
print("Response Time: %f, Transcript: %s" %
|
|
|
|
(finish_time - start_time, transcript))
|
|
|
|
|
|
|
|
|
|
|
|
def start_server():
|
|
|
|
"""Start the ASR server"""
|
|
|
|
# prepare data generator
|
|
|
|
data_generator = DataGenerator(
|
|
|
|
vocab_filepath=args.vocab_path,
|
|
|
|
mean_std_filepath=args.mean_std_path,
|
|
|
|
augmentation_config='{}',
|
|
|
|
specgram_type=args.specgram_type,
|
|
|
|
num_threads=1,
|
|
|
|
keep_transcription_text=True)
|
|
|
|
# prepare ASR model
|
|
|
|
ds2_model = DeepSpeech2Model(
|
|
|
|
vocab_size=data_generator.vocab_size,
|
|
|
|
num_conv_layers=args.num_conv_layers,
|
|
|
|
num_rnn_layers=args.num_rnn_layers,
|
|
|
|
rnn_layer_size=args.rnn_layer_size,
|
|
|
|
use_gru=args.use_gru,
|
|
|
|
pretrained_model_path=args.model_path,
|
|
|
|
share_rnn_weights=args.share_rnn_weights)
|
|
|
|
|
|
|
|
vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list]
|
|
|
|
|
|
|
|
if args.decoding_method == "ctc_beam_search":
|
|
|
|
ds2_model.init_ext_scorer(args.alpha, args.beta, args.lang_model_path,
|
|
|
|
vocab_list)
|
|
|
|
# prepare ASR inference handler
|
|
|
|
def file_to_transcript(filename):
|
|
|
|
feature = data_generator.process_utterance(filename, "")
|
|
|
|
probs_split = ds2_model.infer_batch_probs(
|
|
|
|
infer_data=[feature],
|
|
|
|
feeding_dict=data_generator.feeding)
|
|
|
|
|
|
|
|
if args.decoding_method == "ctc_greedy":
|
|
|
|
result_transcript = ds2_model.decode_batch_greedy(
|
|
|
|
probs_split=probs_split,
|
|
|
|
vocab_list=vocab_list)
|
|
|
|
else:
|
|
|
|
result_transcript = ds2_model.decode_batch_beam_search(
|
|
|
|
probs_split=probs_split,
|
|
|
|
beam_alpha=args.alpha,
|
|
|
|
beam_beta=args.beta,
|
|
|
|
beam_size=args.beam_size,
|
|
|
|
cutoff_prob=args.cutoff_prob,
|
|
|
|
cutoff_top_n=args.cutoff_top_n,
|
|
|
|
vocab_list=vocab_list,
|
|
|
|
num_processes=1)
|
|
|
|
return result_transcript[0]
|
|
|
|
|
|
|
|
# warming up with utterrances sampled from Librispeech
|
|
|
|
print('-----------------------------------------------------------')
|
|
|
|
print('Warming up ...')
|
|
|
|
warm_up_test(
|
|
|
|
audio_process_handler=file_to_transcript,
|
|
|
|
manifest_path=args.warmup_manifest,
|
|
|
|
num_test_cases=3)
|
|
|
|
print('-----------------------------------------------------------')
|
|
|
|
|
|
|
|
# start the server
|
|
|
|
server = AsrTCPServer(
|
|
|
|
server_address=(args.host_ip, args.host_port),
|
|
|
|
RequestHandlerClass=AsrRequestHandler,
|
|
|
|
speech_save_dir=args.speech_save_dir,
|
|
|
|
audio_process_handler=file_to_transcript)
|
|
|
|
print("ASR Server Started.")
|
|
|
|
server.serve_forever()
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
print_arguments(args)
|
|
|
|
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
|
|
|
|
start_server()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|