You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
303 lines
12 KiB
303 lines
12 KiB
2 years ago
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import logging
|
||
|
from pathlib import Path
|
||
|
from typing import Dict
|
||
|
|
||
|
import paddle
|
||
|
from paddle import distributed as dist
|
||
|
from paddle.io import DataLoader
|
||
|
from paddle.nn import Layer
|
||
|
from paddle.optimizer import Optimizer
|
||
|
|
||
|
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
||
|
from paddlespeech.t2s.training.reporter import report
|
||
|
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
||
|
from paddlespeech.t2s.training.updaters.standard_updater import UpdaterState
|
||
|
|
||
|
logging.basicConfig(
|
||
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
||
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
||
|
logger = logging.getLogger(__name__)
|
||
|
logger.setLevel(logging.INFO)
|
||
|
|
||
|
|
||
|
class DiffSingerUpdater(StandardUpdater):
|
||
|
def __init__(self,
|
||
|
model: Layer,
|
||
|
optimizers: Dict[str, Optimizer],
|
||
|
criterions: Dict[str, Layer],
|
||
|
dataloader: DataLoader,
|
||
|
ds_train_start_steps: int=160000,
|
||
|
output_dir: Path=None,
|
||
|
only_train_diffusion: bool=True):
|
||
|
super().__init__(model, optimizers, dataloader, init_state=None)
|
||
|
self.model = model._layers if isinstance(model,
|
||
|
paddle.DataParallel) else model
|
||
|
self.only_train_diffusion = only_train_diffusion
|
||
|
|
||
|
self.optimizers = optimizers
|
||
|
self.optimizer_fs2: Optimizer = optimizers['fs2']
|
||
|
self.optimizer_ds: Optimizer = optimizers['ds']
|
||
|
|
||
|
self.criterions = criterions
|
||
|
self.criterion_fs2 = criterions['fs2']
|
||
|
self.criterion_ds = criterions['ds']
|
||
|
|
||
|
self.dataloader = dataloader
|
||
|
|
||
|
self.ds_train_start_steps = ds_train_start_steps
|
||
|
|
||
|
self.state = UpdaterState(iteration=0, epoch=0)
|
||
|
self.train_iterator = iter(self.dataloader)
|
||
|
|
||
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
||
|
self.filehandler = logging.FileHandler(str(log_file))
|
||
|
logger.addHandler(self.filehandler)
|
||
|
self.logger = logger
|
||
|
self.msg = ""
|
||
|
|
||
|
def update_core(self, batch):
|
||
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
||
|
losses_dict = {}
|
||
|
# spk_id!=None in multiple spk diffsinger
|
||
|
spk_id = batch["spk_id"] if "spk_id" in batch else None
|
||
|
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
|
||
|
# No explicit speaker identifier labels are used during voice cloning training.
|
||
|
if spk_emb is not None:
|
||
|
spk_id = None
|
||
|
|
||
|
# only train fastspeech2 module firstly
|
||
|
if self.state.iteration < self.ds_train_start_steps:
|
||
|
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
||
|
text=batch["text"],
|
||
|
note=batch["note"],
|
||
|
note_dur=batch["note_dur"],
|
||
|
is_slur=batch["is_slur"],
|
||
|
text_lengths=batch["text_lengths"],
|
||
|
speech=batch["speech"],
|
||
|
speech_lengths=batch["speech_lengths"],
|
||
|
durations=batch["durations"],
|
||
|
pitch=batch["pitch"],
|
||
|
energy=batch["energy"],
|
||
|
spk_id=spk_id,
|
||
|
spk_emb=spk_emb,
|
||
|
only_train_fs2=True, )
|
||
|
|
||
|
l1_loss_fs2, ssim_loss_fs2, duration_loss, pitch_loss, energy_loss, speaker_loss = self.criterion_fs2(
|
||
|
after_outs=after_outs,
|
||
|
before_outs=before_outs,
|
||
|
d_outs=d_outs,
|
||
|
p_outs=p_outs,
|
||
|
e_outs=e_outs,
|
||
|
ys=ys,
|
||
|
ds=batch["durations"],
|
||
|
ps=batch["pitch"],
|
||
|
es=batch["energy"],
|
||
|
ilens=batch["text_lengths"],
|
||
|
olens=olens,
|
||
|
spk_logits=spk_logits,
|
||
|
spk_ids=spk_id, )
|
||
|
|
||
|
loss_fs2 = l1_loss_fs2 + ssim_loss_fs2 + duration_loss + pitch_loss + energy_loss + speaker_loss
|
||
|
|
||
|
self.optimizer_fs2.clear_grad()
|
||
|
loss_fs2.backward()
|
||
|
self.optimizer_fs2.step()
|
||
|
|
||
|
report("train/loss_fs2", float(loss_fs2))
|
||
|
report("train/l1_loss_fs2", float(l1_loss_fs2))
|
||
|
report("train/ssim_loss_fs2", float(ssim_loss_fs2))
|
||
|
report("train/duration_loss", float(duration_loss))
|
||
|
report("train/pitch_loss", float(pitch_loss))
|
||
|
|
||
|
losses_dict["l1_loss_fs2"] = float(l1_loss_fs2)
|
||
|
losses_dict["ssim_loss_fs2"] = float(ssim_loss_fs2)
|
||
|
losses_dict["duration_loss"] = float(duration_loss)
|
||
|
losses_dict["pitch_loss"] = float(pitch_loss)
|
||
|
|
||
|
if speaker_loss != 0.:
|
||
|
report("train/speaker_loss", float(speaker_loss))
|
||
|
losses_dict["speaker_loss"] = float(speaker_loss)
|
||
|
if energy_loss != 0.:
|
||
|
report("train/energy_loss", float(energy_loss))
|
||
|
losses_dict["energy_loss"] = float(energy_loss)
|
||
|
|
||
|
losses_dict["loss_fs2"] = float(loss_fs2)
|
||
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||
|
for k, v in losses_dict.items())
|
||
|
|
||
|
# Then only train diffusion module, freeze fastspeech2 parameters.
|
||
|
if self.state.iteration > self.ds_train_start_steps:
|
||
|
for param in self.model.fs2.parameters():
|
||
|
param.trainable = False if self.only_train_diffusion else True
|
||
|
|
||
|
noise_pred, noise_target, mel_masks = self.model(
|
||
|
text=batch["text"],
|
||
|
note=batch["note"],
|
||
|
note_dur=batch["note_dur"],
|
||
|
is_slur=batch["is_slur"],
|
||
|
text_lengths=batch["text_lengths"],
|
||
|
speech=batch["speech"],
|
||
|
speech_lengths=batch["speech_lengths"],
|
||
|
durations=batch["durations"],
|
||
|
pitch=batch["pitch"],
|
||
|
energy=batch["energy"],
|
||
|
spk_id=spk_id,
|
||
|
spk_emb=spk_emb,
|
||
|
only_train_fs2=False, )
|
||
|
|
||
|
noise_pred = noise_pred.transpose((0, 2, 1))
|
||
|
noise_target = noise_target.transpose((0, 2, 1))
|
||
|
mel_masks = mel_masks.transpose((0, 2, 1))
|
||
|
l1_loss_ds = self.criterion_ds(
|
||
|
noise_pred=noise_pred,
|
||
|
noise_target=noise_target,
|
||
|
mel_masks=mel_masks, )
|
||
|
|
||
|
loss_ds = l1_loss_ds
|
||
|
|
||
|
self.optimizer_ds.clear_grad()
|
||
|
loss_ds.backward()
|
||
|
self.optimizer_ds.step()
|
||
|
|
||
|
report("train/loss_ds", float(loss_ds))
|
||
|
report("train/l1_loss_ds", float(l1_loss_ds))
|
||
|
losses_dict["l1_loss_ds"] = float(l1_loss_ds)
|
||
|
losses_dict["loss_ds"] = float(loss_ds)
|
||
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||
|
for k, v in losses_dict.items())
|
||
|
|
||
|
self.logger.info(self.msg)
|
||
|
|
||
|
|
||
|
class DiffSingerEvaluator(StandardEvaluator):
|
||
|
def __init__(
|
||
|
self,
|
||
|
model: Layer,
|
||
|
criterions: Dict[str, Layer],
|
||
|
dataloader: DataLoader,
|
||
|
output_dir: Path=None, ):
|
||
|
super().__init__(model, dataloader)
|
||
|
self.model = model._layers if isinstance(model,
|
||
|
paddle.DataParallel) else model
|
||
|
|
||
|
self.criterions = criterions
|
||
|
self.criterion_fs2 = criterions['fs2']
|
||
|
self.criterion_ds = criterions['ds']
|
||
|
self.dataloader = dataloader
|
||
|
|
||
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
||
|
self.filehandler = logging.FileHandler(str(log_file))
|
||
|
logger.addHandler(self.filehandler)
|
||
|
self.logger = logger
|
||
|
self.msg = ""
|
||
|
|
||
|
def evaluate_core(self, batch):
|
||
|
self.msg = "Evaluate: "
|
||
|
losses_dict = {}
|
||
|
# spk_id!=None in multiple spk diffsinger
|
||
|
spk_id = batch["spk_id"] if "spk_id" in batch else None
|
||
|
spk_emb = batch["spk_emb"] if "spk_emb" in batch else None
|
||
|
if spk_emb is not None:
|
||
|
spk_id = None
|
||
|
|
||
|
# Here show fastspeech2 eval
|
||
|
before_outs, after_outs, d_outs, p_outs, e_outs, ys, olens, spk_logits = self.model(
|
||
|
text=batch["text"],
|
||
|
note=batch["note"],
|
||
|
note_dur=batch["note_dur"],
|
||
|
is_slur=batch["is_slur"],
|
||
|
text_lengths=batch["text_lengths"],
|
||
|
speech=batch["speech"],
|
||
|
speech_lengths=batch["speech_lengths"],
|
||
|
durations=batch["durations"],
|
||
|
pitch=batch["pitch"],
|
||
|
energy=batch["energy"],
|
||
|
spk_id=spk_id,
|
||
|
spk_emb=spk_emb,
|
||
|
only_train_fs2=True, )
|
||
|
|
||
|
l1_loss_fs2, ssim_loss_fs2, duration_loss, pitch_loss, energy_loss, speaker_loss = self.criterion_fs2(
|
||
|
after_outs=after_outs,
|
||
|
before_outs=before_outs,
|
||
|
d_outs=d_outs,
|
||
|
p_outs=p_outs,
|
||
|
e_outs=e_outs,
|
||
|
ys=ys,
|
||
|
ds=batch["durations"],
|
||
|
ps=batch["pitch"],
|
||
|
es=batch["energy"],
|
||
|
ilens=batch["text_lengths"],
|
||
|
olens=olens,
|
||
|
spk_logits=spk_logits,
|
||
|
spk_ids=spk_id, )
|
||
|
|
||
|
loss_fs2 = l1_loss_fs2 + ssim_loss_fs2 + duration_loss + pitch_loss + energy_loss + speaker_loss
|
||
|
|
||
|
report("eval/loss_fs2", float(loss_fs2))
|
||
|
report("eval/l1_loss_fs2", float(l1_loss_fs2))
|
||
|
report("eval/ssim_loss_fs2", float(ssim_loss_fs2))
|
||
|
report("eval/duration_loss", float(duration_loss))
|
||
|
report("eval/pitch_loss", float(pitch_loss))
|
||
|
|
||
|
losses_dict["l1_loss_fs2"] = float(l1_loss_fs2)
|
||
|
losses_dict["ssim_loss_fs2"] = float(ssim_loss_fs2)
|
||
|
losses_dict["duration_loss"] = float(duration_loss)
|
||
|
losses_dict["pitch_loss"] = float(pitch_loss)
|
||
|
|
||
|
if speaker_loss != 0.:
|
||
|
report("eval/speaker_loss", float(speaker_loss))
|
||
|
losses_dict["speaker_loss"] = float(speaker_loss)
|
||
|
if energy_loss != 0.:
|
||
|
report("eval/energy_loss", float(energy_loss))
|
||
|
losses_dict["energy_loss"] = float(energy_loss)
|
||
|
|
||
|
losses_dict["loss_fs2"] = float(loss_fs2)
|
||
|
|
||
|
# Here show diffusion eval
|
||
|
noise_pred, noise_target, mel_masks = self.model(
|
||
|
text=batch["text"],
|
||
|
note=batch["note"],
|
||
|
note_dur=batch["note_dur"],
|
||
|
is_slur=batch["is_slur"],
|
||
|
text_lengths=batch["text_lengths"],
|
||
|
speech=batch["speech"],
|
||
|
speech_lengths=batch["speech_lengths"],
|
||
|
durations=batch["durations"],
|
||
|
pitch=batch["pitch"],
|
||
|
energy=batch["energy"],
|
||
|
spk_id=spk_id,
|
||
|
spk_emb=spk_emb,
|
||
|
only_train_fs2=False, )
|
||
|
|
||
|
noise_pred = noise_pred.transpose((0, 2, 1))
|
||
|
noise_target = noise_target.transpose((0, 2, 1))
|
||
|
mel_masks = mel_masks.transpose((0, 2, 1))
|
||
|
l1_loss_ds = self.criterion_ds(
|
||
|
noise_pred=noise_pred,
|
||
|
noise_target=noise_target,
|
||
|
mel_masks=mel_masks, )
|
||
|
|
||
|
loss_ds = l1_loss_ds
|
||
|
|
||
|
report("eval/loss_ds", float(loss_ds))
|
||
|
report("eval/l1_loss_ds", float(l1_loss_ds))
|
||
|
losses_dict["l1_loss_ds"] = float(l1_loss_ds)
|
||
|
losses_dict["loss_ds"] = float(loss_ds)
|
||
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
||
|
for k, v in losses_dict.items())
|
||
|
|
||
|
self.logger.info(self.msg)
|