|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
import paddlespeech.s2t # noqa: F401
|
|
|
|
from paddlespeech.audio.utils.tensor_utils import add_sos_eos
|
|
|
|
from paddlespeech.audio.utils.tensor_utils import pad_sequence
|
|
|
|
|
|
|
|
# from paddlespeech.audio.utils.tensor_utils import reverse_pad_list
|
|
|
|
|
|
|
|
|
|
|
|
def reverse_pad_list(ys_pad: paddle.Tensor,
|
|
|
|
ys_lens: paddle.Tensor,
|
|
|
|
pad_value: float=-1.0) -> paddle.Tensor:
|
|
|
|
"""Reverse padding for the list of tensors.
|
|
|
|
Args:
|
|
|
|
ys_pad (tensor): The padded tensor (B, Tokenmax).
|
|
|
|
ys_lens (tensor): The lens of token seqs (B)
|
|
|
|
pad_value (int): Value for padding.
|
|
|
|
Returns:
|
|
|
|
Tensor: Padded tensor (B, Tokenmax).
|
|
|
|
Examples:
|
|
|
|
>>> x
|
|
|
|
tensor([[1, 2, 3, 4], [5, 6, 7, 0], [8, 9, 0, 0]])
|
|
|
|
>>> pad_list(x, 0)
|
|
|
|
tensor([[4, 3, 2, 1],
|
|
|
|
[7, 6, 5, 0],
|
|
|
|
[9, 8, 0, 0]])
|
|
|
|
"""
|
|
|
|
r_ys_pad = pad_sequence([(paddle.flip(y[:i], [0]))
|
|
|
|
for y, i in zip(ys_pad, ys_lens)], True, pad_value)
|
|
|
|
return r_ys_pad
|
|
|
|
|
|
|
|
|
|
|
|
def naive_reverse_pad_list_with_sos_eos(r_hyps,
|
|
|
|
r_hyps_lens,
|
|
|
|
sos=5000,
|
|
|
|
eos=5000,
|
|
|
|
ignore_id=-1):
|
|
|
|
r_hyps = reverse_pad_list(r_hyps, r_hyps_lens, float(ignore_id))
|
|
|
|
r_hyps, _ = add_sos_eos(r_hyps, sos, eos, ignore_id)
|
|
|
|
return r_hyps
|
|
|
|
|
|
|
|
|
|
|
|
def reverse_pad_list_with_sos_eos(r_hyps,
|
|
|
|
r_hyps_lens,
|
|
|
|
sos=5000,
|
|
|
|
eos=5000,
|
|
|
|
ignore_id=-1):
|
|
|
|
# >>> r_hyps = reverse_pad_list(r_hyps, r_hyps_lens, float(self.ignore_id))
|
|
|
|
# >>> r_hyps, _ = add_sos_eos(r_hyps, self.sos, self.eos, self.ignore_id)
|
|
|
|
max_len = paddle.max(r_hyps_lens)
|
|
|
|
index_range = paddle.arange(0, max_len, 1)
|
|
|
|
seq_len_expand = r_hyps_lens.unsqueeze(1)
|
|
|
|
seq_mask = seq_len_expand > index_range # (beam, max_len)
|
|
|
|
|
|
|
|
index = (seq_len_expand - 1) - index_range # (beam, max_len)
|
|
|
|
# >>> index
|
|
|
|
# >>> tensor([[ 2, 1, 0],
|
|
|
|
# >>> [ 2, 1, 0],
|
|
|
|
# >>> [ 0, -1, -2]])
|
|
|
|
index = index * seq_mask
|
|
|
|
|
|
|
|
# >>> index
|
|
|
|
# >>> tensor([[2, 1, 0],
|
|
|
|
# >>> [2, 1, 0],
|
|
|
|
# >>> [0, 0, 0]])
|
|
|
|
def paddle_gather(x, dim, index):
|
|
|
|
index_shape = index.shape
|
|
|
|
index_flatten = index.flatten()
|
|
|
|
if dim < 0:
|
|
|
|
dim = len(x.shape) + dim
|
|
|
|
nd_index = []
|
|
|
|
for k in range(len(x.shape)):
|
|
|
|
if k == dim:
|
|
|
|
nd_index.append(index_flatten)
|
|
|
|
else:
|
|
|
|
reshape_shape = [1] * len(x.shape)
|
|
|
|
reshape_shape[k] = x.shape[k]
|
|
|
|
x_arange = paddle.arange(x.shape[k], dtype=index.dtype)
|
|
|
|
x_arange = x_arange.reshape(reshape_shape)
|
|
|
|
dim_index = paddle.expand(x_arange, index_shape).flatten()
|
|
|
|
nd_index.append(dim_index)
|
|
|
|
ind2 = paddle.transpose(paddle.stack(nd_index), [1, 0]).astype("int64")
|
|
|
|
paddle_out = paddle.gather_nd(x, ind2).reshape(index_shape)
|
|
|
|
return paddle_out
|
|
|
|
|
|
|
|
r_hyps = paddle_gather(r_hyps, 1, index)
|
|
|
|
# >>> r_hyps
|
|
|
|
# >>> tensor([[3, 2, 1],
|
|
|
|
# >>> [4, 8, 9],
|
|
|
|
# >>> [2, 2, 2]])
|
|
|
|
r_hyps = paddle.where(seq_mask, r_hyps, eos)
|
|
|
|
# >>> r_hyps
|
|
|
|
# >>> tensor([[3, 2, 1],
|
|
|
|
# >>> [4, 8, 9],
|
|
|
|
# >>> [2, eos, eos]])
|
|
|
|
B = r_hyps.shape[0]
|
|
|
|
_sos = paddle.ones([B, 1], dtype=r_hyps.dtype) * sos
|
|
|
|
# r_hyps = paddle.concat([hyps[:, 0:1], r_hyps], axis=1)
|
|
|
|
r_hyps = paddle.concat([_sos, r_hyps], axis=1)
|
|
|
|
# >>> r_hyps
|
|
|
|
# >>> tensor([[sos, 3, 2, 1],
|
|
|
|
# >>> [sos, 4, 8, 9],
|
|
|
|
# >>> [sos, 2, eos, eos]])
|
|
|
|
return r_hyps
|
|
|
|
|
|
|
|
|
|
|
|
class TestU2Model(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
|
|
paddle.set_device('cpu')
|
|
|
|
|
|
|
|
self.sos = 5000
|
|
|
|
self.eos = 5000
|
|
|
|
self.ignore_id = -1
|
|
|
|
self.reverse_hyps = paddle.to_tensor([[4, 3, 2, 1, -1],
|
|
|
|
[5, 4, 3, 2, 1]])
|
|
|
|
self.reverse_hyps_sos_eos = paddle.to_tensor(
|
|
|
|
[[self.sos, 4, 3, 2, 1, self.eos], [self.sos, 5, 4, 3, 2, 1]])
|
|
|
|
|
|
|
|
self.hyps = paddle.to_tensor([[1, 2, 3, 4, -1], [1, 2, 3, 4, 5]])
|
|
|
|
|
|
|
|
self.hyps_lens = paddle.to_tensor([4, 5], paddle.int32)
|
|
|
|
|
|
|
|
def test_reverse_pad_list(self):
|
|
|
|
r_hyps = reverse_pad_list(self.hyps, self.hyps_lens)
|
|
|
|
self.assertSequenceEqual(r_hyps.tolist(), self.reverse_hyps.tolist())
|
|
|
|
|
|
|
|
def test_naive_reverse_pad_list_with_sos_eos(self):
|
|
|
|
r_hyps_sos_eos = naive_reverse_pad_list_with_sos_eos(self.hyps,
|
|
|
|
self.hyps_lens)
|
|
|
|
self.assertSequenceEqual(r_hyps_sos_eos.tolist(),
|
|
|
|
self.reverse_hyps_sos_eos.tolist())
|
|
|
|
|
|
|
|
def test_static_reverse_pad_list_with_sos_eos(self):
|
|
|
|
r_hyps_sos_eos_static = reverse_pad_list_with_sos_eos(self.hyps,
|
|
|
|
self.hyps_lens)
|
|
|
|
self.assertSequenceEqual(r_hyps_sos_eos_static.tolist(),
|
|
|
|
self.reverse_hyps_sos_eos.tolist())
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|