|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
""" Paddle Wav2Vec2 model."""
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import Optional
|
|
|
|
from typing import Tuple
|
|
|
|
from typing import Union
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle import nn
|
|
|
|
|
|
|
|
from paddlespeech.s2t.models.wav2vec2.modules.activations import ACT2FN
|
|
|
|
from paddlespeech.s2t.models.wav2vec2.modules.modeling_outputs import BaseModelOutput
|
|
|
|
from paddlespeech.s2t.models.wav2vec2.modules.modeling_outputs import ModelOutput
|
|
|
|
from paddlespeech.s2t.models.wav2vec2.modules.modeling_outputs import Wav2Vec2BaseModelOutput
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class Wav2Vec2ForPreTrainingOutput(ModelOutput):
|
|
|
|
"""
|
|
|
|
Output type of [`Wav2Vec2ForPreTraining`], with potential hidden states and attentions.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
loss (*optional*, returned when `sample_negative_indices` are passed, `paddle.Tensor` of shape `(1,)`):
|
|
|
|
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
|
|
|
|
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
|
|
|
|
projected_states (`paddle.Tensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
|
|
|
|
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
|
|
|
|
projected quantized states.
|
|
|
|
projected_quantized_states (`paddle.Tensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
|
|
|
|
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
|
|
|
|
target vectors for contrastive loss.
|
|
|
|
hidden_states (`tuple(paddle.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
|
|
Tuple of `paddle.Tensor` (one for the output of the embeddings + one for the output of each layer) of
|
|
|
|
shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
|
|
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
|
|
attentions (`tuple(paddle.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
|
|
Tuple of `paddle.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
|
|
sequence_length)`.
|
|
|
|
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
|
|
heads.
|
|
|
|
contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `paddle.Tensor` of shape `(1,)`):
|
|
|
|
The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
|
|
|
|
diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `paddle.Tensor` of shape `(1,)`):
|
|
|
|
The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
|
|
|
|
"""
|
|
|
|
|
|
|
|
loss: Optional[paddle.Tensor] = None
|
|
|
|
projected_states: paddle.Tensor = None
|
|
|
|
projected_quantized_states: paddle.Tensor = None
|
|
|
|
codevector_perplexity: paddle.Tensor = None
|
|
|
|
hidden_states: Optional[Tuple[paddle.Tensor]] = None
|
|
|
|
attentions: Optional[Tuple[paddle.Tensor]] = None
|
|
|
|
contrastive_loss: Optional[paddle.Tensor] = None
|
|
|
|
diversity_loss: Optional[paddle.Tensor] = None
|
|
|
|
|
|
|
|
|
|
|
|
def _compute_mask_indices(
|
|
|
|
shape: Tuple[int, int],
|
|
|
|
mask_prob: float,
|
|
|
|
mask_length: int,
|
|
|
|
attention_mask: Optional[paddle.Tensor]=None,
|
|
|
|
min_masks: int=0, ) -> np.ndarray:
|
|
|
|
"""
|
|
|
|
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
|
|
|
|
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
|
|
|
|
CPU as part of the preprocessing during training.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
|
|
|
|
the first element is the batch size and the second element is the length of the axis to span.
|
|
|
|
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
|
|
|
|
independently generated mask spans of length `mask_length` is computed by
|
|
|
|
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
|
|
|
|
actual percentage will be smaller.
|
|
|
|
mask_length: size of the mask
|
|
|
|
min_masks: minimum number of masked spans
|
|
|
|
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
|
|
|
|
each batch dimension.
|
|
|
|
"""
|
|
|
|
batch_size, sequence_length = shape
|
|
|
|
|
|
|
|
if mask_length < 1:
|
|
|
|
raise ValueError("`mask_length` has to be bigger than 0.")
|
|
|
|
|
|
|
|
if mask_length > sequence_length:
|
|
|
|
raise ValueError(
|
|
|
|
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
|
|
|
|
f" and `sequence_length`: {sequence_length}`")
|
|
|
|
|
|
|
|
# epsilon is used for probabilistic rounding
|
|
|
|
epsilon = np.random.rand(1).item()
|
|
|
|
|
|
|
|
def compute_num_masked_span(input_length):
|
|
|
|
"""Given input length, compute how many spans should be masked"""
|
|
|
|
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
|
|
|
|
num_masked_span = max(num_masked_span, min_masks)
|
|
|
|
|
|
|
|
# make sure num masked span <= sequence_length
|
|
|
|
if num_masked_span * mask_length > sequence_length:
|
|
|
|
num_masked_span = sequence_length // mask_length
|
|
|
|
|
|
|
|
# make sure num_masked span is also <= input_length - (mask_length - 1)
|
|
|
|
if input_length - (mask_length - 1) < num_masked_span:
|
|
|
|
num_masked_span = max(input_length - (mask_length - 1), 0)
|
|
|
|
|
|
|
|
return num_masked_span
|
|
|
|
|
|
|
|
# compute number of masked spans in batch
|
|
|
|
input_lengths = (attention_mask.sum(-1).detach().tolist()
|
|
|
|
if attention_mask is not None else
|
|
|
|
[sequence_length for _ in range(batch_size)])
|
|
|
|
|
|
|
|
# SpecAugment mask to fill
|
|
|
|
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=np.bool)
|
|
|
|
spec_aug_mask_idxs = []
|
|
|
|
|
|
|
|
max_num_masked_span = compute_num_masked_span(sequence_length)
|
|
|
|
|
|
|
|
if max_num_masked_span == 0:
|
|
|
|
return spec_aug_mask
|
|
|
|
|
|
|
|
for input_length in input_lengths:
|
|
|
|
# compute num of masked spans for this input
|
|
|
|
num_masked_span = compute_num_masked_span(input_length)
|
|
|
|
|
|
|
|
# get random indices to mask
|
|
|
|
spec_aug_mask_idx = np.random.choice(
|
|
|
|
np.arange(input_length - (mask_length - 1)),
|
|
|
|
num_masked_span,
|
|
|
|
replace=False)
|
|
|
|
|
|
|
|
# pick first sampled index that will serve as a dummy index to pad vector
|
|
|
|
# to ensure same dimension for all batches due to probabilistic rounding
|
|
|
|
# Picking first sample just pads those vectors twice.
|
|
|
|
if len(spec_aug_mask_idx) == 0:
|
|
|
|
# this case can only happen if `input_length` is strictly smaller then
|
|
|
|
# `sequence_length` in which case the last token has to be a padding
|
|
|
|
# token which we can use as a dummy mask id
|
|
|
|
dummy_mask_idx = sequence_length - 1
|
|
|
|
else:
|
|
|
|
dummy_mask_idx = spec_aug_mask_idx[0]
|
|
|
|
|
|
|
|
spec_aug_mask_idx = np.concatenate([
|
|
|
|
spec_aug_mask_idx,
|
|
|
|
np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) *
|
|
|
|
dummy_mask_idx
|
|
|
|
])
|
|
|
|
spec_aug_mask_idxs.append(spec_aug_mask_idx)
|
|
|
|
|
|
|
|
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
|
|
|
|
|
|
|
|
# expand masked indices to masked spans
|
|
|
|
spec_aug_mask_idxs = np.broadcast_to(
|
|
|
|
spec_aug_mask_idxs[:, :, None],
|
|
|
|
(batch_size, max_num_masked_span, mask_length))
|
|
|
|
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(
|
|
|
|
(batch_size, max_num_masked_span * mask_length))
|
|
|
|
|
|
|
|
# add offset to the starting indexes so that indexes now create a span
|
|
|
|
offsets = np.arange(mask_length)[None, None, :]
|
|
|
|
offsets = np.broadcast_to(offsets, (
|
|
|
|
batch_size, max_num_masked_span, mask_length)).reshape(
|
|
|
|
(batch_size, max_num_masked_span * mask_length))
|
|
|
|
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
|
|
|
|
|
|
|
|
# ensure that we cannot have indices larger than sequence_length
|
|
|
|
if spec_aug_mask_idxs.max() > sequence_length - 1:
|
|
|
|
spec_aug_mask_idxs[spec_aug_mask_idxs >
|
|
|
|
sequence_length - 1] = sequence_length - 1
|
|
|
|
|
|
|
|
# scatter indices to mask
|
|
|
|
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
|
|
|
|
|
|
|
|
return spec_aug_mask
|
|
|
|
|
|
|
|
|
|
|
|
def _sample_negative_indices(features_shape: Tuple,
|
|
|
|
num_negatives: int,
|
|
|
|
mask_time_indices: Optional[np.ndarray]=None):
|
|
|
|
"""
|
|
|
|
Sample `num_negatives` vectors from feature vectors.
|
|
|
|
"""
|
|
|
|
batch_size, sequence_length = features_shape
|
|
|
|
|
|
|
|
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
|
|
|
|
sequence_length_range = np.arange(sequence_length)
|
|
|
|
|
|
|
|
# get `num_negatives` random vector indices from the same utterance
|
|
|
|
sampled_negative_indices = np.zeros(
|
|
|
|
shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
|
|
|
|
|
|
|
|
mask_time_indices = (mask_time_indices.astype(np.bool)
|
|
|
|
if mask_time_indices is not None else
|
|
|
|
np.ones(features_shape, dtype=np.bool))
|
|
|
|
|
|
|
|
for batch_idx in range(batch_size):
|
|
|
|
high = mask_time_indices[batch_idx].sum() - 1
|
|
|
|
mapped_masked_indices = sequence_length_range[mask_time_indices[
|
|
|
|
batch_idx]]
|
|
|
|
|
|
|
|
feature_indices = np.broadcast_to(
|
|
|
|
np.arange(high + 1)[:, None], (high + 1, num_negatives))
|
|
|
|
sampled_indices = np.random.randint(
|
|
|
|
0, high, size=(high + 1, num_negatives))
|
|
|
|
# avoid sampling the same positive vector, but keep the distribution uniform
|
|
|
|
sampled_indices[sampled_indices >= feature_indices] += 1
|
|
|
|
|
|
|
|
# remap to actual indices
|
|
|
|
sampled_negative_indices[batch_idx][mask_time_indices[
|
|
|
|
batch_idx]] = mapped_masked_indices[sampled_indices]
|
|
|
|
|
|
|
|
# correct for batch size
|
|
|
|
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
|
|
|
|
|
|
|
|
return sampled_negative_indices
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2NoLayerNormConvLayer(nn.Layer):
|
|
|
|
def __init__(self, config, layer_id=0):
|
|
|
|
super().__init__()
|
|
|
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
|
|
|
self.out_conv_dim = config.conv_dim[layer_id]
|
|
|
|
|
|
|
|
self.conv = nn.Conv1D(
|
|
|
|
self.in_conv_dim,
|
|
|
|
self.out_conv_dim,
|
|
|
|
kernel_size=config.conv_kernel[layer_id],
|
|
|
|
stride=config.conv_stride[layer_id],
|
|
|
|
bias_attr=config.conv_bias, )
|
|
|
|
self.activation = ACT2FN[config.feat_extract_activation]
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
hidden_states = self.activation(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2LayerNormConvLayer(nn.Layer):
|
|
|
|
def __init__(self, config, layer_id=0):
|
|
|
|
super().__init__()
|
|
|
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
|
|
|
self.out_conv_dim = config.conv_dim[layer_id]
|
|
|
|
|
|
|
|
self.conv = nn.Conv1D(
|
|
|
|
self.in_conv_dim,
|
|
|
|
self.out_conv_dim,
|
|
|
|
kernel_size=config.conv_kernel[layer_id],
|
|
|
|
stride=config.conv_stride[layer_id],
|
|
|
|
bias_attr=config.conv_bias, )
|
|
|
|
self.layer_norm = nn.LayerNorm(self.out_conv_dim)
|
|
|
|
self.activation = ACT2FN[config.feat_extract_activation]
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
hidden_states = hidden_states.transpose([0, 2, 1])
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
hidden_states = hidden_states.transpose([0, 2, 1])
|
|
|
|
|
|
|
|
hidden_states = self.activation(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2GroupNormConvLayer(nn.Layer):
|
|
|
|
def __init__(self, config, layer_id=0):
|
|
|
|
super().__init__()
|
|
|
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
|
|
|
self.out_conv_dim = config.conv_dim[layer_id]
|
|
|
|
|
|
|
|
self.conv = nn.Conv1D(
|
|
|
|
self.in_conv_dim,
|
|
|
|
self.out_conv_dim,
|
|
|
|
kernel_size=config.conv_kernel[layer_id],
|
|
|
|
stride=config.conv_stride[layer_id],
|
|
|
|
bias_attr=config.conv_bias, )
|
|
|
|
self.activation = ACT2FN[config.feat_extract_activation]
|
|
|
|
|
|
|
|
self.layer_norm = nn.GroupNorm(
|
|
|
|
num_groups=self.out_conv_dim, num_channels=self.out_conv_dim)
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
hidden_states = self.activation(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2PositionalConvEmbedding(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.conv = nn.Conv1D(
|
|
|
|
config.hidden_size,
|
|
|
|
config.hidden_size,
|
|
|
|
kernel_size=config.num_conv_pos_embeddings,
|
|
|
|
padding=config.num_conv_pos_embeddings // 2,
|
|
|
|
groups=config.num_conv_pos_embedding_groups, )
|
|
|
|
|
|
|
|
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
|
|
|
|
|
|
|
|
self.padding = Wav2Vec2SamePadLayer(config.num_conv_pos_embeddings)
|
|
|
|
self.activation = ACT2FN[config.feat_extract_activation]
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
hidden_states = hidden_states.transpose([0, 2, 1])
|
|
|
|
|
|
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
hidden_states = self.padding(hidden_states)
|
|
|
|
hidden_states = self.activation(hidden_states)
|
|
|
|
|
|
|
|
hidden_states = hidden_states.transpose([0, 2, 1])
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2SamePadLayer(nn.Layer):
|
|
|
|
def __init__(self, num_conv_pos_embeddings):
|
|
|
|
super().__init__()
|
|
|
|
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
if self.num_pad_remove > 0:
|
|
|
|
hidden_states = hidden_states[:, :, :-self.num_pad_remove]
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2FeatureEncoder(nn.Layer):
|
|
|
|
"""Construct the features from raw audio waveform"""
|
|
|
|
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
if config.feat_extract_norm == "group":
|
|
|
|
conv_layers = [Wav2Vec2GroupNormConvLayer(config, layer_id=0)] + [
|
|
|
|
Wav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1)
|
|
|
|
for i in range(config.num_feat_extract_layers - 1)
|
|
|
|
]
|
|
|
|
elif config.feat_extract_norm == "layer":
|
|
|
|
conv_layers = [
|
|
|
|
Wav2Vec2LayerNormConvLayer(config, layer_id=i)
|
|
|
|
for i in range(config.num_feat_extract_layers)
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
|
|
|
|
)
|
|
|
|
self.conv_layers = nn.LayerList(conv_layers)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
|
|
def _freeze_parameters(self):
|
|
|
|
for param in self.parameters():
|
|
|
|
param.trainable = False
|
|
|
|
|
|
|
|
def forward(self, input_values):
|
|
|
|
hidden_states = input_values[:, None]
|
|
|
|
for conv_layer in self.conv_layers:
|
|
|
|
hidden_states = conv_layer(hidden_states)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2FeatureProjection(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.layer_norm = nn.LayerNorm(
|
|
|
|
config.conv_dim[-1], epsilon=config.layer_norm_eps)
|
|
|
|
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
|
|
|
|
self.dropout = nn.Dropout(config.feat_proj_dropout)
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
# non-projected hidden states are needed for quantization
|
|
|
|
norm_hidden_states = self.layer_norm(hidden_states)
|
|
|
|
hidden_states = self.projection(norm_hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
return hidden_states, norm_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2
|
|
|
|
class Wav2Vec2Attention(nn.Layer):
|
|
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
embed_dim: int,
|
|
|
|
num_heads: int,
|
|
|
|
dropout: float=0.0,
|
|
|
|
is_decoder: bool=False,
|
|
|
|
bias: bool=True, ):
|
|
|
|
super().__init__()
|
|
|
|
self.embed_dim = embed_dim
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.dropout = dropout
|
|
|
|
self.head_dim = embed_dim // num_heads
|
|
|
|
|
|
|
|
if (self.head_dim * num_heads) != self.embed_dim:
|
|
|
|
raise ValueError(
|
|
|
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
|
|
|
f" and `num_heads`: {num_heads}).")
|
|
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.is_decoder = is_decoder
|
|
|
|
|
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias_attr=bias)
|
|
|
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias_attr=bias)
|
|
|
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias_attr=bias)
|
|
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias_attr=bias)
|
|
|
|
|
|
|
|
def _shape(self, tensor: paddle.Tensor, seq_len: int, bsz: int):
|
|
|
|
return paddle.reshape(tensor, (bsz, seq_len, self.num_heads,
|
|
|
|
self.head_dim)).transpose([0, 2, 1, 3])
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states: paddle.Tensor,
|
|
|
|
key_value_states: Optional[paddle.Tensor]=None,
|
|
|
|
past_key_value: Optional[Tuple[paddle.Tensor]]=None,
|
|
|
|
attention_mask: Optional[paddle.Tensor]=None,
|
|
|
|
layer_head_mask: Optional[paddle.Tensor]=None,
|
|
|
|
output_attentions: bool=False, ) -> Tuple[paddle.Tensor, Optional[
|
|
|
|
paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
|
|
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
|
|
|
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
|
|
|
# for the decoder
|
|
|
|
is_cross_attention = key_value_states is not None
|
|
|
|
|
|
|
|
bsz, tgt_len, _ = hidden_states.shape
|
|
|
|
|
|
|
|
# get query proj
|
|
|
|
query_states = self.q_proj(hidden_states) * self.scaling
|
|
|
|
# get key, value proj
|
|
|
|
if is_cross_attention and past_key_value is not None:
|
|
|
|
# reuse k,v, cross_attentions
|
|
|
|
key_states = past_key_value[0]
|
|
|
|
value_states = past_key_value[1]
|
|
|
|
elif is_cross_attention:
|
|
|
|
# cross_attentions
|
|
|
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
|
|
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
|
|
|
elif past_key_value is not None:
|
|
|
|
# reuse k, v, self_attention
|
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
|
|
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
|
|
|
key_states = paddle.concat([past_key_value[0], key_states], axis=2)
|
|
|
|
value_states = paddle.concat(
|
|
|
|
[past_key_value[1], value_states], axis=2)
|
|
|
|
else:
|
|
|
|
# self_attention
|
|
|
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
|
|
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
|
|
|
|
|
|
|
if self.is_decoder:
|
|
|
|
# if cross_attention save Tuple(paddle.Tensor, paddle.Tensor) of all cross attention key/value_states.
|
|
|
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
|
|
|
# key/value_states (first "if" case)
|
|
|
|
# if uni-directional self-attention (decoder) save Tuple(paddle.Tensor, paddle.Tensor) of
|
|
|
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
|
|
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
|
|
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
|
|
|
past_key_value = (key_states, value_states)
|
|
|
|
|
|
|
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
|
|
|
query_states = self._shape(query_states, tgt_len,
|
|
|
|
bsz).reshape(proj_shape)
|
|
|
|
key_states = key_states.reshape(proj_shape)
|
|
|
|
value_states = value_states.reshape(proj_shape)
|
|
|
|
|
|
|
|
src_len = key_states.shape[1]
|
|
|
|
attn_weights = paddle.bmm(query_states, key_states.transpose([0, 2, 1]))
|
|
|
|
|
|
|
|
if attn_weights.shape != [bsz * self.num_heads, tgt_len, src_len]:
|
|
|
|
raise ValueError(
|
|
|
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
|
|
|
f" {attn_weights.shape}")
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
if attention_mask.shape != [bsz, 1, tgt_len, src_len]:
|
|
|
|
raise ValueError(
|
|
|
|
f"Attention mask should be of size {[bsz, 1, tgt_len, src_len]}, but is {attention_mask.shape}"
|
|
|
|
)
|
|
|
|
attn_weights = attn_weights.reshape(bsz, self.num_heads, tgt_len,
|
|
|
|
src_len) + attention_mask
|
|
|
|
attn_weights = attn_weights.reshape(bsz * self.num_heads, tgt_len,
|
|
|
|
src_len)
|
|
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, axis=-1)
|
|
|
|
|
|
|
|
if layer_head_mask is not None:
|
|
|
|
if layer_head_mask.shape != [
|
|
|
|
self.num_heads,
|
|
|
|
]:
|
|
|
|
raise ValueError(
|
|
|
|
f"Head mask for a single layer should be of size {[self.num_heads,]}, but is"
|
|
|
|
f" {layer_head_mask.shape}")
|
|
|
|
attn_weights = layer_head_mask.reshape(
|
|
|
|
(1, -1, 1, 1)) * attn_weights.reshape(
|
|
|
|
(bsz, self.num_heads, tgt_len, src_len))
|
|
|
|
attn_weights = attn_weights.reshape(
|
|
|
|
(bsz * self.num_heads, tgt_len, src_len))
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
# this operation is a bit awkward, but it's required to
|
|
|
|
# make sure that attn_weights keeps its gradient.
|
|
|
|
# In order to do so, attn_weights have to be reshaped
|
|
|
|
# twice and have to be reused in the following
|
|
|
|
attn_weights_reshaped = attn_weights.reshape(
|
|
|
|
(bsz, self.num_heads, tgt_len, src_len))
|
|
|
|
attn_weights = attn_weights_reshaped.reshape(
|
|
|
|
(bsz * self.num_heads, tgt_len, src_len))
|
|
|
|
else:
|
|
|
|
attn_weights_reshaped = None
|
|
|
|
|
|
|
|
attn_probs = nn.functional.dropout(
|
|
|
|
attn_weights, p=self.dropout, training=self.training)
|
|
|
|
|
|
|
|
attn_output = paddle.bmm(attn_probs, value_states)
|
|
|
|
|
|
|
|
if attn_output.shape != [bsz * self.num_heads, tgt_len, self.head_dim]:
|
|
|
|
raise ValueError(
|
|
|
|
f"`attn_output` should be of size {[bsz, self.num_heads, tgt_len, self.head_dim]}, but is"
|
|
|
|
f" {attn_output.shape}")
|
|
|
|
|
|
|
|
attn_output = attn_output.reshape(
|
|
|
|
(bsz, self.num_heads, tgt_len, self.head_dim))
|
|
|
|
attn_output = attn_output.transpose([0, 2, 1, 3])
|
|
|
|
|
|
|
|
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
|
|
|
# partitioned aross GPUs when using tensor-parallelism.
|
|
|
|
attn_output = attn_output.reshape((bsz, tgt_len, self.embed_dim))
|
|
|
|
|
|
|
|
attn_output = self.out_proj(attn_output)
|
|
|
|
|
|
|
|
return attn_output, attn_weights_reshaped, past_key_value
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2FeedForward(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
|
|
|
|
|
|
|
self.intermediate_dense = nn.Linear(config.hidden_size,
|
|
|
|
config.intermediate_size)
|
|
|
|
if isinstance(config.hidden_act, str):
|
|
|
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
|
|
|
else:
|
|
|
|
self.intermediate_act_fn = config.hidden_act
|
|
|
|
|
|
|
|
self.output_dense = nn.Linear(config.intermediate_size,
|
|
|
|
config.hidden_size)
|
|
|
|
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
hidden_states = self.intermediate_dense(hidden_states)
|
|
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
|
|
hidden_states = self.intermediate_dropout(hidden_states)
|
|
|
|
|
|
|
|
hidden_states = self.output_dense(hidden_states)
|
|
|
|
hidden_states = self.output_dropout(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2EncoderLayer(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.attention = Wav2Vec2Attention(
|
|
|
|
embed_dim=config.hidden_size,
|
|
|
|
num_heads=config.num_attention_heads,
|
|
|
|
dropout=config.attention_dropout,
|
|
|
|
is_decoder=False, )
|
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
|
|
|
self.layer_norm = nn.LayerNorm(
|
|
|
|
config.hidden_size, epsilon=config.layer_norm_eps)
|
|
|
|
self.feed_forward = Wav2Vec2FeedForward(config)
|
|
|
|
self.final_layer_norm = nn.LayerNorm(
|
|
|
|
config.hidden_size, epsilon=config.layer_norm_eps)
|
|
|
|
|
|
|
|
def forward(self,
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=None,
|
|
|
|
output_attentions=False):
|
|
|
|
attn_residual = hidden_states
|
|
|
|
hidden_states, attn_weights, _ = self.attention(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
output_attentions=output_attentions)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = attn_residual + hidden_states
|
|
|
|
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
hidden_states = hidden_states + self.feed_forward(hidden_states)
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states)
|
|
|
|
|
|
|
|
outputs = (hidden_states, )
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
outputs += (attn_weights, )
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2EncoderLayerStableLayerNorm(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.attention = Wav2Vec2Attention(
|
|
|
|
embed_dim=config.hidden_size,
|
|
|
|
num_heads=config.num_attention_heads,
|
|
|
|
dropout=config.attention_dropout,
|
|
|
|
is_decoder=False, )
|
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
|
|
|
self.layer_norm = nn.LayerNorm(
|
|
|
|
config.hidden_size, epsilon=config.layer_norm_eps)
|
|
|
|
self.feed_forward = Wav2Vec2FeedForward(config)
|
|
|
|
self.final_layer_norm = nn.LayerNorm(
|
|
|
|
config.hidden_size, epsilon=config.layer_norm_eps)
|
|
|
|
|
|
|
|
def forward(self,
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=None,
|
|
|
|
output_attentions=False):
|
|
|
|
attn_residual = hidden_states
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
hidden_states, attn_weights, _ = self.attention(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
output_attentions=output_attentions)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = attn_residual + hidden_states
|
|
|
|
hidden_states = hidden_states + self.feed_forward(
|
|
|
|
self.final_layer_norm(hidden_states))
|
|
|
|
|
|
|
|
outputs = (hidden_states, )
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
outputs += (attn_weights, )
|
|
|
|
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2Encoder(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
|
|
|
|
self.layer_norm = nn.LayerNorm(
|
|
|
|
config.hidden_size, epsilon=config.layer_norm_eps)
|
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
|
|
|
self.layers = nn.LayerList([
|
|
|
|
Wav2Vec2EncoderLayer(config)
|
|
|
|
for _ in range(config.num_hidden_layers)
|
|
|
|
])
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=None,
|
|
|
|
output_attentions=False,
|
|
|
|
output_hidden_states=False,
|
|
|
|
return_dict=True, ):
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
# make sure padded tokens output 0
|
|
|
|
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(
|
|
|
|
1, 1, hidden_states.shape[2])
|
|
|
|
hidden_states[~expand_attention_mask] = 0
|
|
|
|
|
|
|
|
# extend attention_mask
|
|
|
|
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
|
|
|
|
dtype=hidden_states.dtype)
|
|
|
|
attention_mask = attention_mask * np.iinfo(np.float32).min
|
|
|
|
attention_mask = attention_mask.expand(attention_mask.shape[0], 1,
|
|
|
|
attention_mask.shape[-1],
|
|
|
|
attention_mask.shape[-1])
|
|
|
|
|
|
|
|
position_embeddings = self.pos_conv_embed(hidden_states)
|
|
|
|
hidden_states = hidden_states + position_embeddings
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
|
|
|
|
#deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
|
|
|
|
|
|
|
for layer in self.layers:
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states, )
|
|
|
|
|
|
|
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
|
|
dropout_probability = np.random.uniform(0, 1)
|
|
|
|
|
|
|
|
skip_the_layer = True if self.training and (
|
|
|
|
dropout_probability < self.config.layerdrop) else False
|
|
|
|
if not skip_the_layer: # or deepspeed_zero3_is_enabled:
|
|
|
|
# under deepspeed zero3 all gpus must run in sync
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
# create gradient checkpointing function
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
return module(*inputs, output_attentions)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
else:
|
|
|
|
layer_outputs = layer(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
output_attentions=output_attentions)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
|
|
|
|
if skip_the_layer:
|
|
|
|
layer_outputs = (None, None)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1], )
|
|
|
|
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states, )
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(
|
|
|
|
v
|
|
|
|
for v in
|
|
|
|
[hidden_states, all_hidden_states, all_self_attentions]
|
|
|
|
if v is not None)
|
|
|
|
return BaseModelOutput(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attentions, )
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2EncoderStableLayerNorm(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
|
|
|
|
self.layer_norm = nn.LayerNorm(
|
|
|
|
config.hidden_size, epsilon=config.layer_norm_eps)
|
|
|
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
|
|
|
self.layers = nn.LayerList([
|
|
|
|
Wav2Vec2EncoderLayerStableLayerNorm(config)
|
|
|
|
for _ in range(config.num_hidden_layers)
|
|
|
|
])
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=None,
|
|
|
|
output_attentions=False,
|
|
|
|
output_hidden_states=False,
|
|
|
|
return_dict=True, ):
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
# make sure padded tokens are not attended to
|
|
|
|
expand_attention_mask = attention_mask.unsqueeze(
|
|
|
|
-1).repeat_interleave(
|
|
|
|
hidden_states.shape[2], axis=2)
|
|
|
|
hidden_states[~expand_attention_mask] = 0
|
|
|
|
|
|
|
|
# extend attention_mask
|
|
|
|
attention_mask = 1.0 - attention_mask[:, None, None, :].to(
|
|
|
|
dtype=hidden_states.dtype)
|
|
|
|
attention_mask = attention_mask * np.iinfo(np.float32).min
|
|
|
|
attention_mask = attention_mask.expand(attention_mask.shape[0], 1,
|
|
|
|
attention_mask.shape[-1],
|
|
|
|
attention_mask.shape[-1])
|
|
|
|
|
|
|
|
position_embeddings = self.pos_conv_embed(hidden_states)
|
|
|
|
hidden_states = hidden_states + position_embeddings
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
|
|
|
|
for layer in self.layers:
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states, )
|
|
|
|
|
|
|
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
|
|
dropout_probability = np.random.uniform(0, 1)
|
|
|
|
|
|
|
|
skip_the_layer = True if self.training and (
|
|
|
|
dropout_probability < self.config.layerdrop) else False
|
|
|
|
if not skip_the_layer: # or deepspeed_zero3_is_enabled:
|
|
|
|
# under deepspeed zero3 all gpus must run in sync
|
|
|
|
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
# create gradient checkpointing function
|
|
|
|
def create_custom_forward(module):
|
|
|
|
def custom_forward(*inputs):
|
|
|
|
return module(*inputs, output_attentions)
|
|
|
|
|
|
|
|
return custom_forward
|
|
|
|
else:
|
|
|
|
layer_outputs = layer(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
output_attentions=output_attentions)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
|
|
|
|
if skip_the_layer:
|
|
|
|
layer_outputs = (None, None)
|
|
|
|
|
|
|
|
if output_attentions:
|
|
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1], )
|
|
|
|
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
|
|
|
|
if output_hidden_states:
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states, )
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return tuple(
|
|
|
|
v
|
|
|
|
for v in
|
|
|
|
[hidden_states, all_hidden_states, all_self_attentions]
|
|
|
|
if v is not None)
|
|
|
|
return BaseModelOutput(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
hidden_states=all_hidden_states,
|
|
|
|
attentions=all_self_attentions, )
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2GumbelVectorQuantizer(nn.Layer):
|
|
|
|
"""
|
|
|
|
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
|
|
|
|
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.num_groups = config.num_codevector_groups
|
|
|
|
self.num_vars = config.num_codevectors_per_group
|
|
|
|
|
|
|
|
if config.codevector_dim % self.num_groups != 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"`config.codevector_dim {config.codevector_dim} must be divisible "
|
|
|
|
f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
|
|
|
|
)
|
|
|
|
|
|
|
|
# storage for codebook variables (codewords)
|
|
|
|
self.codevectors = paddle.static.create_parameter(
|
|
|
|
shape=[
|
|
|
|
1, self.num_groups * self.num_vars,
|
|
|
|
config.codevector_dim // self.num_groups
|
|
|
|
],
|
|
|
|
dtype='float32')
|
|
|
|
self.weight_proj = nn.Linear(config.conv_dim[-1],
|
|
|
|
self.num_groups * self.num_vars)
|
|
|
|
|
|
|
|
# can be decayed for training
|
|
|
|
self.temperature = 2
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _compute_perplexity(probs, mask=None):
|
|
|
|
if mask is not None:
|
|
|
|
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
|
|
|
|
probs = paddle.where(mask_extended, probs, paddle.zeros_like(probs))
|
|
|
|
marginal_probs = probs.sum(dim=0) / mask.sum()
|
|
|
|
else:
|
|
|
|
marginal_probs = probs.mean(dim=0)
|
|
|
|
|
|
|
|
perplexity = paddle.exp(-paddle.sum(
|
|
|
|
marginal_probs * paddle.log(marginal_probs + 1e-7), dim=-1)).sum()
|
|
|
|
return perplexity
|
|
|
|
|
|
|
|
def forward(self, hidden_states, mask_time_indices=None):
|
|
|
|
batch_size, sequence_length, hidden_size = hidden_states.shape
|
|
|
|
|
|
|
|
# project to codevector dim
|
|
|
|
hidden_states = self.weight_proj(hidden_states)
|
|
|
|
hidden_states = hidden_states.reshape(
|
|
|
|
(batch_size * sequence_length * self.num_groups, -1))
|
|
|
|
|
|
|
|
if self.training:
|
|
|
|
# sample code vector probs via gumbel in differentiateable way
|
|
|
|
codevector_probs = nn.functional.gumbel_softmax(
|
|
|
|
hidden_states.float(), tau=self.temperature,
|
|
|
|
hard=True).type_as(hidden_states)
|
|
|
|
|
|
|
|
# compute perplexity
|
|
|
|
codevector_soft_dist = paddle.softmax(
|
|
|
|
hidden_states.reshape((batch_size * sequence_length,
|
|
|
|
self.num_groups, -1)).float(),
|
|
|
|
axis=-1)
|
|
|
|
perplexity = self._compute_perplexity(codevector_soft_dist,
|
|
|
|
mask_time_indices)
|
|
|
|
else:
|
|
|
|
# take argmax in non-differentiable way
|
|
|
|
# comptute hard codevector distribution (one hot)
|
|
|
|
codevector_idx = hidden_states.argmax(dim=-1)
|
|
|
|
codevector_probs = hidden_states.new_zeros(
|
|
|
|
*hidden_states.shape).scatter_(-1,
|
|
|
|
codevector_idx.reshape((-1, 1)),
|
|
|
|
1.0)
|
|
|
|
codevector_probs = codevector_probs.reshape(
|
|
|
|
(batch_size * sequence_length, self.num_groups, -1))
|
|
|
|
|
|
|
|
perplexity = self._compute_perplexity(codevector_probs,
|
|
|
|
mask_time_indices)
|
|
|
|
|
|
|
|
codevector_probs = codevector_probs.reshape(
|
|
|
|
(batch_size * sequence_length, -1))
|
|
|
|
# use probs to retrieve codevectors
|
|
|
|
codevectors_per_group = codevector_probs.unsqueeze(
|
|
|
|
-1) * self.codevectors
|
|
|
|
codevectors = codevectors_per_group.reshape(
|
|
|
|
(batch_size * sequence_length, self.num_groups, self.num_vars, -1))
|
|
|
|
codevectors = codevectors.sum(-2).reshape(
|
|
|
|
(batch_size, sequence_length, -1))
|
|
|
|
|
|
|
|
return codevectors, perplexity
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2Adapter(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
# feature dim might need to be down-projected
|
|
|
|
if config.output_hidden_size != config.hidden_size:
|
|
|
|
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
|
|
|
|
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size)
|
|
|
|
else:
|
|
|
|
self.proj = self.proj_layer_norm = None
|
|
|
|
|
|
|
|
self.layers = nn.LayerList(
|
|
|
|
Wav2Vec2AdapterLayer(config)
|
|
|
|
for _ in range(config.num_adapter_layers))
|
|
|
|
self.layerdrop = config.layerdrop
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
# down project hidden_states if necessary
|
|
|
|
if self.proj is not None and self.proj_layer_norm is not None:
|
|
|
|
hidden_states = self.proj(hidden_states)
|
|
|
|
hidden_states = self.proj_layer_norm(hidden_states)
|
|
|
|
|
|
|
|
hidden_states = hidden_states.transpose([0, 2, 1])
|
|
|
|
|
|
|
|
for layer in self.layers:
|
|
|
|
layerdrop_prob = np.random.random()
|
|
|
|
if not self.training or (layerdrop_prob > self.layerdrop):
|
|
|
|
hidden_states = layer(hidden_states)
|
|
|
|
|
|
|
|
hidden_states = hidden_states.transpose([0, 2, 1])
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2AdapterLayer(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.conv = nn.Conv1D(
|
|
|
|
config.output_hidden_size,
|
|
|
|
2 * config.output_hidden_size,
|
|
|
|
config.adapter_kernel_size,
|
|
|
|
stride=config.adapter_stride,
|
|
|
|
padding=1, )
|
|
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
hidden_states = nn.functional.glu(hidden_states, axis=1)
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2Model(nn.Layer):
|
|
|
|
def __init__(self, config):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.feature_extractor = Wav2Vec2FeatureEncoder(config)
|
|
|
|
self.feature_projection = Wav2Vec2FeatureProjection(config)
|
|
|
|
|
|
|
|
# model only needs masking vector if mask prob is > 0.0
|
|
|
|
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
|
|
|
# self.masked_spec_embed = nn.Parameter(paddle.Tensor(config.hidden_size).uniform_())
|
|
|
|
#self.masked_spec_embed = paddle.uniform([config.hidden_size])
|
|
|
|
self.masked_spec_embed = paddle.static.create_parameter(
|
|
|
|
shape=[config.hidden_size],
|
|
|
|
dtype='float32',
|
|
|
|
default_initializer=paddle.nn.initializer.Uniform(
|
|
|
|
low=0, high=1.0))
|
|
|
|
if config.do_stable_layer_norm:
|
|
|
|
self.encoder = Wav2Vec2EncoderStableLayerNorm(config)
|
|
|
|
else:
|
|
|
|
self.encoder = Wav2Vec2Encoder(config)
|
|
|
|
|
|
|
|
self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None
|
|
|
|
|
|
|
|
# Initialize weights and apply final processing
|
|
|
|
self.post_init()
|
|
|
|
|
|
|
|
def freeze_feature_encoder(self):
|
|
|
|
"""
|
|
|
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
|
|
|
not be updated during training.
|
|
|
|
"""
|
|
|
|
self.feature_extractor._freeze_parameters()
|
|
|
|
|
|
|
|
def _mask_hidden_states(
|
|
|
|
self,
|
|
|
|
hidden_states: paddle.Tensor,
|
|
|
|
mask_time_indices: Optional[paddle.Tensor]=None,
|
|
|
|
attention_mask: Optional[paddle.Tensor]=None, ):
|
|
|
|
"""
|
|
|
|
Masks extracted features along time axis and/or along feature axis according to
|
|
|
|
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
|
|
|
"""
|
|
|
|
# `config.apply_spec_augment` can set masking to False
|
|
|
|
if not getattr(self.config, "apply_spec_augment", True):
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
# generate indices & apply SpecAugment along time axis
|
|
|
|
batch_size, sequence_length, hidden_size = hidden_states.shape
|
|
|
|
if mask_time_indices is not None:
|
|
|
|
# apply SpecAugment along time axis with given mask_time_indices
|
|
|
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(
|
|
|
|
hidden_states.dtype)
|
|
|
|
elif self.config.mask_time_prob > 0 and self.training:
|
|
|
|
mask_time_indices = _compute_mask_indices(
|
|
|
|
(batch_size, sequence_length),
|
|
|
|
mask_prob=self.config.mask_time_prob,
|
|
|
|
mask_length=self.config.mask_time_length,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
min_masks=self.config.mask_time_min_masks, )
|
|
|
|
mask_time_indices = paddle.to_tensor(
|
|
|
|
mask_time_indices, dtype=paddle.bool)
|
|
|
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(
|
|
|
|
hidden_states.dtype)
|
|
|
|
|
|
|
|
if self.config.mask_feature_prob > 0 and self.training:
|
|
|
|
# generate indices & apply SpecAugment along feature axis
|
|
|
|
mask_feature_indices = _compute_mask_indices(
|
|
|
|
(batch_size, hidden_size),
|
|
|
|
mask_prob=self.config.mask_feature_prob,
|
|
|
|
mask_length=self.config.mask_feature_length,
|
|
|
|
min_masks=self.config.mask_feature_min_masks, )
|
|
|
|
mask_feature_indices = paddle.to_tensor(
|
|
|
|
mask_feature_indices, dtype=paddle.bool)
|
|
|
|
mask_feature_indices = mask_feature_indices[:, None].expand(
|
|
|
|
-1, sequence_length, -1)
|
|
|
|
hidden_states[mask_feature_indices] = 0
|
|
|
|
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_values: Optional[paddle.Tensor],
|
|
|
|
attention_mask: Optional[paddle.Tensor]=None,
|
|
|
|
mask_time_indices: Optional[paddle.Tensor]=None,
|
|
|
|
output_attentions: Optional[bool]=None,
|
|
|
|
output_hidden_states: Optional[bool]=None,
|
|
|
|
return_dict: Optional[bool]=None,
|
|
|
|
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (output_hidden_states
|
|
|
|
if output_hidden_states is not None else
|
|
|
|
self.config.output_hidden_states)
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
extract_features = self.feature_extractor(input_values)
|
|
|
|
extract_features = extract_features.transpose([0, 2, 1])
|
|
|
|
|
|
|
|
if attention_mask is not None:
|
|
|
|
# compute reduced attention_mask corresponding to feature vectors
|
|
|
|
attention_mask = self._get_feature_vector_attention_mask(
|
|
|
|
extract_features.shape[1], attention_mask, add_adapter=False)
|
|
|
|
hidden_states, extract_features = self.feature_projection(
|
|
|
|
extract_features)
|
|
|
|
hidden_states = self._mask_hidden_states(
|
|
|
|
hidden_states,
|
|
|
|
mask_time_indices=mask_time_indices,
|
|
|
|
attention_mask=attention_mask)
|
|
|
|
|
|
|
|
encoder_outputs = self.encoder(
|
|
|
|
hidden_states,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
output_attentions=output_attentions,
|
|
|
|
output_hidden_states=output_hidden_states,
|
|
|
|
return_dict=return_dict, )
|
|
|
|
|
|
|
|
hidden_states = encoder_outputs[0]
|
|
|
|
|
|
|
|
if self.adapter is not None:
|
|
|
|
hidden_states = self.adapter(hidden_states)
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
return (hidden_states, extract_features) + encoder_outputs[1:]
|
|
|
|
|
|
|
|
return Wav2Vec2BaseModelOutput(
|
|
|
|
last_hidden_state=hidden_states,
|
|
|
|
extract_features=extract_features,
|
|
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
|
|
attentions=encoder_outputs.attentions, )
|
|
|
|
|
|
|
|
def post_init(self):
|
|
|
|
"""
|
|
|
|
A method executed at the end of each Transformer model initialization, to execute code that needs the model's
|
|
|
|
modules properly initialized (such as weight initialization).
|
|
|
|
"""
|
|
|
|
# self.init_weights()
|
|
|
|
# self._backward_compatibility_gradient_checkpointing()
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class Wav2Vec2ConfigPure():
|
|
|
|
model_type = "wav2vec2"
|
|
|
|
|
|
|
|
def __init__(self, config):
|
|
|
|
self.output_attentions = False
|
|
|
|
self.output_hidden_states = False
|
|
|
|
self.use_return_dict = True
|
|
|
|
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.feat_extract_norm = config.feat_extract_norm
|
|
|
|
self.feat_extract_activation = config.feat_extract_activation
|
|
|
|
self.conv_dim = config.conv_dim
|
|
|
|
self.conv_stride = config.conv_stride
|
|
|
|
self.conv_kernel = config.conv_kernel
|
|
|
|
self.conv_bias = config.conv_bias
|
|
|
|
self.num_conv_pos_embeddings = config.num_conv_pos_embeddings
|
|
|
|
self.num_conv_pos_embedding_groups = config.num_conv_pos_embedding_groups
|
|
|
|
self.num_feat_extract_layers = len(self.conv_dim)
|
|
|
|
self.num_hidden_layers = config.num_hidden_layers
|
|
|
|
self.intermediate_size = config.intermediate_size
|
|
|
|
self.hidden_act = config.hidden_act
|
|
|
|
self.num_attention_heads = config.num_attention_heads
|
|
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
self.attention_dropout = config.attention_dropout
|
|
|
|
self.activation_dropout = config.activation_dropout
|
|
|
|
self.feat_proj_dropout = config.feat_proj_dropout
|
|
|
|
self.final_dropout = config.final_dropout
|
|
|
|
self.layerdrop = config.layerdrop
|
|
|
|
self.layer_norm_eps = config.layer_norm_eps
|
|
|
|
self.initializer_range = config.initializer_range
|
|
|
|
self.do_stable_layer_norm = config.do_stable_layer_norm
|
|
|
|
self.use_weighted_layer_sum = config.use_weighted_layer_sum
|
|
|
|
|
|
|
|
if ((len(self.conv_stride) != self.num_feat_extract_layers) or
|
|
|
|
(len(self.conv_kernel) != self.num_feat_extract_layers) or
|
|
|
|
(len(self.conv_dim) != self.num_feat_extract_layers)):
|
|
|
|
raise ValueError(
|
|
|
|
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
|
|
|
|
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
|
|
|
|
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
|
|
|
|
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`.")
|
|
|
|
|
|
|
|
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
|
|
|
self.apply_spec_augment = config.apply_spec_augment
|
|
|
|
self.mask_time_prob = config.mask_time_prob
|
|
|
|
self.mask_time_length = config.mask_time_length
|
|
|
|
self.mask_time_min_masks = config.mask_time_min_masks
|
|
|
|
self.mask_feature_prob = config.mask_feature_prob
|
|
|
|
self.mask_feature_length = config.mask_feature_length
|
|
|
|
self.mask_feature_min_masks = config.mask_feature_min_masks
|
|
|
|
|
|
|
|
# parameters for pretraining with codevector quantized representations
|
|
|
|
self.num_codevectors_per_group = config.num_codevectors_per_group
|
|
|
|
self.num_codevector_groups = config.num_codevector_groups
|
|
|
|
self.contrastive_logits_temperature = config.contrastive_logits_temperature
|
|
|
|
self.feat_quantizer_dropout = config.feat_quantizer_dropout
|
|
|
|
self.num_negatives = config.num_negatives
|
|
|
|
self.codevector_dim = config.codevector_dim
|
|
|
|
self.proj_codevector_dim = config.proj_codevector_dim
|
|
|
|
self.diversity_loss_weight = config.diversity_loss_weight
|
|
|
|
|
|
|
|
# adapter
|
|
|
|
self.add_adapter = config.add_adapter
|
|
|
|
self.adapter_kernel_size = config.adapter_kernel_size
|
|
|
|
self.adapter_stride = config.adapter_stride
|
|
|
|
self.num_adapter_layers = config.num_adapter_layers
|
|
|
|
self.output_hidden_size = config.output_hidden_size or config.hidden_size
|
|
|
|
|
|
|
|
@property
|
|
|
|
def inputs_to_logits_ratio(self):
|
|
|
|
return functools.reduce(operator.mul, self.conv_stride, 1)
|