You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/models/wav2vec2/modules/containers.py

145 lines
5.5 KiB

# Authors
# * Peter Plantinga 2020
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from speechbrain(https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/nnet/containers.py).
import inspect
import paddle
class Sequential(paddle.nn.LayerDict):
"""A sequence of modules with potentially inferring shape on construction.
If layers are passed with names, these can be referenced with dot notation.
Arguments
---------
input_shape : iterable
A list or tuple of ints or None, representing the expected shape of an
input tensor. None represents a variable-length dimension. If no
``input_shape`` is passed, no shape inference will be performed.
*layers, **named_layers
The inputs are treated as a list of layers to be
applied in sequence. The output shape of each layer is used to
infer the shape of the following layer. If a tuple is returned,
only the shape of the first element is used to determine input
shape of the next layer (e.g. RNN returns output, hidden).
Example
-------
>>> inputs = paddle.rand(10, 40, 50)
>>> model = Sequential(input_shape=inputs.shape)
>>> model.append(Linear, n_neurons=100, layer_name="layer1")
>>> model.append(Linear, n_neurons=200, layer_name="layer2")
>>> outputs = model(inputs)
>>> outputs.shape
paddle.shape([10, 40, 200])
>>> outputs = model.layer1(inputs)
>>> outputs.shape
paddle.shape([10, 40, 100])
"""
def __init__(self, *layers, input_shape=None, **named_layers):
super().__init__()
# Make sure either layers or input_shape is passed
if not layers and input_shape is None and not named_layers:
raise ValueError("Must pass either layers or input shape")
# Keep track of what layers need "lengths" passed
self.length_layers = []
# Replace None dimensions with arbitrary value
self.input_shape = input_shape
if input_shape and None in input_shape:
self.input_shape = list(input_shape)
for i, dim in enumerate(self.input_shape):
# To reduce size of dummy tensors, use 1 for batch dim
if i == 0 and dim is None:
dim = 1
# Use 64 as nice round arbitrary value, big enough that
# halving this dimension a few times doesn't reach 1
self.input_shape[i] = dim or 256
# Append non-named layers
for layer in layers:
self.append(layer)
# Append named layers
for name, layer in named_layers.items():
self.append(layer, layer_name=name)
def append(self, layer, *args, layer_name=None, **kwargs):
"""Add a layer to the list of layers, inferring shape if necessary.
Arguments
---------
layer : A paddle.nn.Module class or object
If the layer is a class, it should accept an argument called
``input_shape`` which will be inferred and passed. If the layer
is a module object, it is added as-is.
layer_name : str
The name of the layer, for reference. If the name is in use,
``_{count}`` will be appended.
*args, **kwargs
These are passed to the layer if it is constructed.
"""
# Compute layer_name
if layer_name is None:
layer_name = str(len(self))
elif layer_name in self:
index = 0
while f"{layer_name}_{index}" in self:
index += 1
layer_name = f"{layer_name}_{index}"
# Check if it needs to be constructed with input shape
if self.input_shape:
argspec = inspect.getfullargspec(layer)
if "input_shape" in argspec.args + argspec.kwonlyargs:
input_shape = self.get_output_shape()
layer = layer(*args, input_shape=input_shape, **kwargs)
# Finally, append the layer.
try:
self[layer_name] = layer
# self.add_module(layer_name, layer)
except TypeError:
raise ValueError(
"Must pass `input_shape` at initialization and use "
"modules that take `input_shape` to infer shape when "
"using `append()`.")
def get_output_shape(self):
"""Returns expected shape of the output.
Computed by passing dummy input constructed with the
``self.input_shape`` attribute.
"""
with paddle.no_grad():
dummy_input = paddle.zeros(self.input_shape)
dummy_output = self(dummy_input)
return dummy_output.shape
def forward(self, x):
"""Applies layers in sequence, passing only the first element of tuples.
Arguments
---------
x : paddle.Tensor
The input tensor to run through the network.
"""
for layer in self.values():
x = layer(x)
if isinstance(x, tuple):
x = x[0]
return x