You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/models/wav2vec2/modules/VanillaNN.py

73 lines
2.6 KiB

# Authors
# * Elena Rastorgueva 2020
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from speechbrain(https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/lobes/models/VanillaNN.py).
import paddle
from paddlespeech.s2t.models.wav2vec2.modules import containers
from paddlespeech.s2t.models.wav2vec2.modules import linear
from paddlespeech.s2t.models.wav2vec2.modules.normalization import BatchNorm1d
class VanillaNN(containers.Sequential):
"""A simple vanilla Deep Neural Network.
Arguments
---------
activation : paddle class
A class used for constructing the activation layers.
dnn_blocks : int
The number of linear neural blocks to include.
dnn_neurons : int
The number of neurons in the linear layers.
Example
-------
>>> inputs = paddle.rand([10, 120, 60])
>>> model = VanillaNN(input_shape=inputs.shape)
>>> outputs = model(inputs)
>>> outputs.shape
paddle.shape([10, 120, 512])
"""
def __init__(self,
input_shape,
dnn_blocks=2,
dnn_neurons=512,
activation=True,
normalization=False,
dropout_rate=0.5):
super().__init__(input_shape=[None, None, input_shape])
if not isinstance(dropout_rate, list):
dropout_rate = [dropout_rate] * dnn_blocks
else:
assert len(
dropout_rate
) == dnn_blocks, "len(dropout_rate) must equal to dnn_blocks"
for block_index in range(dnn_blocks):
self.append(
linear.Linear,
n_neurons=dnn_neurons,
bias_attr=None,
layer_name="linear", )
if normalization:
self.append(
BatchNorm1d, input_size=dnn_neurons, layer_name='bn')
if activation:
self.append(paddle.nn.LeakyReLU(), layer_name="act")
self.append(
paddle.nn.Dropout(p=dropout_rate[block_index]),
layer_name='dropout')