|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
from prettytable import PrettyTable
|
|
|
|
|
|
|
|
from ..utils import cli_register
|
|
|
|
from ..utils import stats_wrapper
|
|
|
|
|
|
|
|
__all__ = ['StatsExecutor']
|
|
|
|
|
|
|
|
model_name_format = {
|
|
|
|
'asr': 'Model-Language-Sample Rate',
|
|
|
|
'cls': 'Model-Sample Rate',
|
|
|
|
'st': 'Model-Source language-Target language',
|
|
|
|
'text': 'Model-Task-Language',
|
|
|
|
'tts': 'Model-Language',
|
|
|
|
'vector': 'Model-Sample Rate'
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
@cli_register(
|
|
|
|
name='paddlespeech.stats',
|
|
|
|
description='Get speech tasks support models list.')
|
|
|
|
class StatsExecutor():
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.parser = argparse.ArgumentParser(
|
|
|
|
prog='paddlespeech.stats', add_help=True)
|
|
|
|
self.task_choices = ['asr', 'cls', 'st', 'text', 'tts', 'vector']
|
|
|
|
self.parser.add_argument(
|
|
|
|
'--task',
|
|
|
|
type=str,
|
|
|
|
default='asr',
|
|
|
|
choices=self.task_choices,
|
|
|
|
help='Choose speech task.',
|
|
|
|
required=True)
|
|
|
|
|
|
|
|
def show_support_models(self, pretrained_models: dict):
|
|
|
|
fields = model_name_format[self.task].split("-")
|
|
|
|
table = PrettyTable(fields)
|
|
|
|
for key in pretrained_models:
|
|
|
|
table.add_row(key.split("-"))
|
|
|
|
print(table)
|
|
|
|
|
|
|
|
def execute(self, argv: List[str]) -> bool:
|
|
|
|
"""
|
|
|
|
Command line entry.
|
|
|
|
"""
|
|
|
|
parser_args = self.parser.parse_args(argv)
|
|
|
|
has_exceptions = False
|
|
|
|
try:
|
|
|
|
self(parser_args.task)
|
|
|
|
except Exception as e:
|
|
|
|
has_exceptions = True
|
|
|
|
if has_exceptions:
|
|
|
|
return False
|
|
|
|
else:
|
|
|
|
return True
|
|
|
|
|
|
|
|
@stats_wrapper
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
task: str=None, ):
|
|
|
|
"""
|
|
|
|
Python API to call an executor.
|
|
|
|
"""
|
|
|
|
self.task = task
|
|
|
|
if self.task not in self.task_choices:
|
|
|
|
print("Please input correct speech task, choices = " + str(
|
|
|
|
self.task_choices))
|
|
|
|
|
|
|
|
elif self.task == 'asr':
|
|
|
|
try:
|
|
|
|
from ..asr.pretrained_models import pretrained_models
|
|
|
|
print(
|
|
|
|
"Here is the list of ASR pretrained models released by PaddleSpeech that can be used by command line and python API"
|
|
|
|
)
|
|
|
|
self.show_support_models(pretrained_models)
|
|
|
|
except BaseException:
|
|
|
|
print("Failed to get the list of ASR pretrained models.")
|
|
|
|
|
|
|
|
elif self.task == 'cls':
|
|
|
|
try:
|
|
|
|
from ..cls.pretrained_models import pretrained_models
|
|
|
|
print(
|
|
|
|
"Here is the list of CLS pretrained models released by PaddleSpeech that can be used by command line and python API"
|
|
|
|
)
|
|
|
|
self.show_support_models(pretrained_models)
|
|
|
|
except BaseException:
|
|
|
|
print("Failed to get the list of CLS pretrained models.")
|
|
|
|
|
|
|
|
elif self.task == 'st':
|
|
|
|
try:
|
|
|
|
from ..st.pretrained_models import pretrained_models
|
|
|
|
print(
|
|
|
|
"Here is the list of ST pretrained models released by PaddleSpeech that can be used by command line and python API"
|
|
|
|
)
|
|
|
|
self.show_support_models(pretrained_models)
|
|
|
|
except BaseException:
|
|
|
|
print("Failed to get the list of ST pretrained models.")
|
|
|
|
|
|
|
|
elif self.task == 'text':
|
|
|
|
try:
|
|
|
|
from ..text.pretrained_models import pretrained_models
|
|
|
|
print(
|
|
|
|
"Here is the list of TEXT pretrained models released by PaddleSpeech that can be used by command line and python API"
|
|
|
|
)
|
|
|
|
self.show_support_models(pretrained_models)
|
|
|
|
except BaseException:
|
|
|
|
print("Failed to get the list of TEXT pretrained models.")
|
|
|
|
|
|
|
|
elif self.task == 'tts':
|
|
|
|
try:
|
|
|
|
from ..tts.pretrained_models import pretrained_models
|
|
|
|
print(
|
|
|
|
"Here is the list of TTS pretrained models released by PaddleSpeech that can be used by command line and python API"
|
|
|
|
)
|
|
|
|
self.show_support_models(pretrained_models)
|
|
|
|
except BaseException:
|
|
|
|
print("Failed to get the list of TTS pretrained models.")
|
|
|
|
|
|
|
|
elif self.task == 'vector':
|
|
|
|
try:
|
|
|
|
from ..vector.pretrained_models import pretrained_models
|
|
|
|
print(
|
|
|
|
"Here is the list of Speaker Recognition pretrained models released by PaddleSpeech that can be used by command line and python API"
|
|
|
|
)
|
|
|
|
self.show_support_models(pretrained_models)
|
|
|
|
except BaseException:
|
|
|
|
print(
|
|
|
|
"Failed to get the list of Speaker Recognition pretrained models."
|
|
|
|
)
|