You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
4.3 KiB
129 lines
4.3 KiB
4 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from typing import List
|
||
|
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
|
||
|
from deepspeech.utils.log import Log
|
||
|
|
||
|
logger = Log(__name__).getlog()
|
||
|
|
||
|
__all__ = ["forced_align", "remove_duplicates_and_blank", "insert_blank"]
|
||
|
|
||
|
|
||
|
def remove_duplicates_and_blank(hyp: List[int], blank_id=0) -> List[int]:
|
||
|
"""ctc alignment to ctc label ids.
|
||
|
|
||
|
"abaa-acee-" -> "abaace"
|
||
|
|
||
|
Args:
|
||
|
hyp (List[int]): hypotheses ids, (L)
|
||
|
blank_id (int, optional): blank id. Defaults to 0.
|
||
|
|
||
|
Returns:
|
||
|
List[int]: remove dupicate ids, then remove blank id.
|
||
|
"""
|
||
|
new_hyp: List[int] = []
|
||
|
cur = 0
|
||
|
while cur < len(hyp):
|
||
|
if hyp[cur] != blank_id:
|
||
|
new_hyp.append(hyp[cur])
|
||
|
prev = cur
|
||
|
while cur < len(hyp) and hyp[cur] == hyp[prev]:
|
||
|
cur += 1
|
||
|
return new_hyp
|
||
|
|
||
|
|
||
|
def insert_blank(label: np.ndarray, blank_id: int=0):
|
||
|
"""Insert blank token between every two label token.
|
||
|
|
||
|
"abcdefg" -> "-a-b-c-d-e-f-g-"
|
||
|
|
||
|
Args:
|
||
|
label ([np.ndarray]): label ids, (L).
|
||
|
blank_id (int, optional): blank id. Defaults to 0.
|
||
|
|
||
|
Returns:
|
||
|
[np.ndarray]: (2L+1).
|
||
|
"""
|
||
|
label = np.expand_dims(label, 1) #[L, 1]
|
||
|
blanks = np.zeros((label.shape[0], 1), dtype=np.int64) + blank_id
|
||
|
label = np.concatenate([blanks, label], axis=1) #[L, 2]
|
||
|
label = label.reshape(-1) #[2L]
|
||
|
label = np.append(label, label[0]) #[2L + 1]
|
||
|
return label
|
||
|
|
||
|
|
||
|
def forced_align(ctc_probs: paddle.Tensor, y: paddle.Tensor,
|
||
|
blank_id=0) -> list:
|
||
|
"""ctc forced alignment.
|
||
|
|
||
|
https://distill.pub/2017/ctc/
|
||
|
|
||
|
Args:
|
||
|
ctc_probs (paddle.Tensor): hidden state sequence, 2d tensor (T, D)
|
||
|
y (paddle.Tensor): label id sequence tensor, 1d tensor (L)
|
||
|
blank_id (int): blank symbol index
|
||
|
Returns:
|
||
|
paddle.Tensor: best alignment result, (T).
|
||
|
"""
|
||
|
y_insert_blank = insert_blank(y, blank_id)
|
||
|
|
||
|
log_alpha = paddle.zeros(
|
||
|
(ctc_probs.size(0), len(y_insert_blank))) #(T, 2L+1)
|
||
|
log_alpha = log_alpha - float('inf') # log of zero
|
||
|
state_path = (paddle.zeros(
|
||
|
(ctc_probs.size(0), len(y_insert_blank)), dtype=paddle.int16) - 1
|
||
|
) # state path
|
||
|
|
||
|
# init start state
|
||
|
log_alpha[0, 0] = ctc_probs[0][y_insert_blank[0]] # Sb
|
||
|
log_alpha[0, 1] = ctc_probs[0][y_insert_blank[1]] # Snb
|
||
|
|
||
|
for t in range(1, ctc_probs.size(0)):
|
||
|
for s in range(len(y_insert_blank)):
|
||
|
if y_insert_blank[s] == blank_id or s < 2 or y_insert_blank[
|
||
|
s] == y_insert_blank[s - 2]:
|
||
|
candidates = paddle.to_tensor(
|
||
|
[log_alpha[t - 1, s], log_alpha[t - 1, s - 1]])
|
||
|
prev_state = [s, s - 1]
|
||
|
else:
|
||
|
candidates = paddle.to_tensor([
|
||
|
log_alpha[t - 1, s],
|
||
|
log_alpha[t - 1, s - 1],
|
||
|
log_alpha[t - 1, s - 2],
|
||
|
])
|
||
|
prev_state = [s, s - 1, s - 2]
|
||
|
log_alpha[t, s] = paddle.max(candidates) + ctc_probs[t][
|
||
|
y_insert_blank[s]]
|
||
|
state_path[t, s] = prev_state[paddle.argmax(candidates)]
|
||
|
|
||
|
state_seq = -1 * paddle.ones((ctc_probs.size(0), 1), dtype=paddle.int16)
|
||
|
|
||
|
candidates = paddle.to_tensor([
|
||
|
log_alpha[-1, len(y_insert_blank) - 1], # Sb
|
||
|
log_alpha[-1, len(y_insert_blank) - 2] # Snb
|
||
|
])
|
||
|
prev_state = [len(y_insert_blank) - 1, len(y_insert_blank) - 2]
|
||
|
state_seq[-1] = prev_state[paddle.argmax(candidates)]
|
||
|
for t in range(ctc_probs.size(0) - 2, -1, -1):
|
||
|
state_seq[t] = state_path[t + 1, state_seq[t + 1, 0]]
|
||
|
|
||
|
output_alignment = []
|
||
|
for t in range(0, ctc_probs.size(0)):
|
||
|
output_alignment.append(y_insert_blank[state_seq[t, 0]])
|
||
|
|
||
|
return output_alignment
|