You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/ws/asr_socket.py

104 lines
4.2 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
from fastapi import APIRouter
from fastapi import WebSocket
from fastapi import WebSocketDisconnect
from starlette.websockets import WebSocketState as WebSocketState
from paddlespeech.server.engine.engine_pool import get_engine_pool
from paddlespeech.server.utils.buffer import ChunkBuffer
from paddlespeech.server.utils.vad import VADAudio
router = APIRouter()
@router.websocket('/ws/asr')
async def websocket_endpoint(websocket: WebSocket):
print("websocket protocal receive the dataset")
await websocket.accept()
engine_pool = get_engine_pool()
asr_engine = engine_pool['asr']
# init buffer
# each websocekt connection has its own chunk buffer
chunk_buffer_conf = asr_engine.config.chunk_buffer_conf
chunk_buffer = ChunkBuffer(
window_n=chunk_buffer_conf.window_n,
shift_n=chunk_buffer_conf.shift_n,
window_ms=chunk_buffer_conf.window_ms,
shift_ms=chunk_buffer_conf.shift_ms,
sample_rate=chunk_buffer_conf.sample_rate,
sample_width=chunk_buffer_conf.sample_width)
# init vad
vad_conf = asr_engine.config.get('vad_conf', None)
if vad_conf:
vad = VADAudio(
aggressiveness=vad_conf['aggressiveness'],
rate=vad_conf['sample_rate'],
frame_duration_ms=vad_conf['frame_duration_ms'])
try:
while True:
# careful here, changed the source code from starlette.websockets
assert websocket.application_state == WebSocketState.CONNECTED
message = await websocket.receive()
websocket._raise_on_disconnect(message)
if "text" in message:
message = json.loads(message["text"])
if 'signal' not in message:
resp = {"status": "ok", "message": "no valid json data"}
await websocket.send_json(resp)
if message['signal'] == 'start':
resp = {"status": "ok", "signal": "server_ready"}
# do something at begining here
await websocket.send_json(resp)
elif message['signal'] == 'end':
engine_pool = get_engine_pool()
asr_engine = engine_pool['asr']
# reset single engine for an new connection
asr_engine.reset()
resp = {"status": "ok", "signal": "finished"}
await websocket.send_json(resp)
break
else:
resp = {"status": "ok", "message": "no valid json data"}
await websocket.send_json(resp)
elif "bytes" in message:
message = message["bytes"]
engine_pool = get_engine_pool()
asr_engine = engine_pool['asr']
asr_results = ""
frames = chunk_buffer.frame_generator(message)
for frame in frames:
# get the pcm data from the bytes
samples = np.frombuffer(frame.bytes, dtype=np.int16)
sample_rate = asr_engine.config.sample_rate
x_chunk, x_chunk_lens = asr_engine.preprocess(samples,
sample_rate)
asr_engine.run(x_chunk, x_chunk_lens)
asr_results = asr_engine.postprocess()
asr_results = asr_engine.postprocess()
resp = {'asr_results': asr_results}
await websocket.send_json(resp)
except WebSocketDisconnect:
pass