You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.3 KiB
74 lines
2.3 KiB
3 years ago
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import librosa
|
||
|
import numpy as np
|
||
|
import paddle
|
||
|
import torch
|
||
|
from parallel_wavegan.losses import stft_loss as sl
|
||
|
from scipy import signal
|
||
|
|
||
|
from parakeet.modules.stft_loss import MultiResolutionSTFTLoss
|
||
|
from parakeet.modules.stft_loss import STFT
|
||
|
|
||
|
|
||
|
def test_stft():
|
||
|
stft = STFT(n_fft=1024, hop_length=256, win_length=1024)
|
||
|
x = paddle.uniform([4, 46080])
|
||
|
S = stft.magnitude(x)
|
||
|
window = signal.get_window('hann', 1024, fftbins=True)
|
||
|
D2 = torch.stft(
|
||
|
torch.as_tensor(x.numpy()),
|
||
|
n_fft=1024,
|
||
|
hop_length=256,
|
||
|
win_length=1024,
|
||
|
window=torch.as_tensor(window))
|
||
|
S2 = (D2**2).sum(-1).sqrt()
|
||
|
S3 = np.abs(
|
||
|
librosa.stft(x.numpy()[0], n_fft=1024, hop_length=256, win_length=1024))
|
||
|
print(S2.shape)
|
||
|
print(S.numpy()[0])
|
||
|
print(S2.data.cpu().numpy()[0])
|
||
|
print(S3)
|
||
|
|
||
|
|
||
|
def test_torch_stft():
|
||
|
# NOTE: torch.stft use no window by default
|
||
|
x = np.random.uniform(-1.0, 1.0, size=(46080, ))
|
||
|
window = signal.get_window('hann', 1024, fftbins=True)
|
||
|
D2 = torch.stft(
|
||
|
torch.as_tensor(x),
|
||
|
n_fft=1024,
|
||
|
hop_length=256,
|
||
|
win_length=1024,
|
||
|
window=torch.as_tensor(window))
|
||
|
D3 = librosa.stft(
|
||
|
x, n_fft=1024, hop_length=256, win_length=1024, window='hann')
|
||
|
print(D2[:, :, 0].data.cpu().numpy()[:, 30:60])
|
||
|
print(D3.real[:, 30:60])
|
||
|
# print(D3.imag[:, 30:60])
|
||
|
|
||
|
|
||
|
def test_multi_resolution_stft_loss():
|
||
|
net = MultiResolutionSTFTLoss()
|
||
|
net2 = sl.MultiResolutionSTFTLoss()
|
||
|
|
||
|
x = paddle.uniform([4, 46080])
|
||
|
y = paddle.uniform([4, 46080])
|
||
|
sc, m = net(x, y)
|
||
|
sc2, m2 = net2(torch.as_tensor(x.numpy()), torch.as_tensor(y.numpy()))
|
||
|
print(sc.numpy())
|
||
|
print(sc2.data.cpu().numpy())
|
||
|
print(m.numpy())
|
||
|
print(m2.data.cpu().numpy())
|