You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/cli/vector/infer.py

520 lines
20 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
from collections import OrderedDict
from typing import Dict
from typing import List
from typing import Optional
from typing import Union
import paddle
import soundfile
from yacs.config import CfgNode
from ..executor import BaseExecutor
from ..log import logger
from ..utils import cli_register
from ..utils import download_and_decompress
from ..utils import MODEL_HOME
from ..utils import stats_wrapper
from paddleaudio.backends import load as load_audio
from paddleaudio.compliance.librosa import melspectrogram
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
from paddlespeech.vector.io.batch import feature_normalize
from paddlespeech.vector.modules.sid_model import SpeakerIdetification
pretrained_models = {
# The tags for pretrained_models should be "{model_name}[-{dataset}][-{sr}][-...]".
# e.g. "ecapatdnn_voxceleb12-16k".
# Command line and python api use "{model_name}[-{dataset}]" as --model, usage:
# "paddlespeech vector --task spk --model ecapatdnn_voxceleb12-16k --sr 16000 --input ./input.wav"
"ecapatdnn_voxceleb12-16k": {
'url':
'https://paddlespeech.bj.bcebos.com/vector/voxceleb/sv0_ecapa_tdnn_voxceleb12_ckpt_0_2_0.tar.gz',
'md5':
'cc33023c54ab346cd318408f43fcaf95',
'cfg_path':
'conf/model.yaml', # the yaml config path
'ckpt_path':
'model/model', # the format is ${dir}/{model_name},
# so the first 'model' is dir, the second 'model' is the name
# this means we have a model stored as model/model.pdparams
},
}
model_alias = {
"ecapatdnn": "paddlespeech.vector.models.ecapa_tdnn:EcapaTdnn",
}
@cli_register(
name="paddlespeech.vector",
description="Speech to vector embedding infer command.")
class VectorExecutor(BaseExecutor):
def __init__(self):
super(VectorExecutor, self).__init__()
self.parser = argparse.ArgumentParser(
prog="paddlespeech.vector", add_help=True)
self.parser.add_argument(
"--model",
type=str,
default="ecapatdnn_voxceleb12",
choices=["ecapatdnn_voxceleb12"],
help="Choose model type of vector task.")
self.parser.add_argument(
"--task",
type=str,
default="spk",
choices=["spk", "score"],
help="task type in vector domain")
self.parser.add_argument(
"--input",
type=str,
default=None,
help="Audio file to extract embedding.")
self.parser.add_argument(
"--sample_rate",
type=int,
default=16000,
choices=[16000],
help="Choose the audio sample rate of the model. 8000 or 16000")
self.parser.add_argument(
"--ckpt_path",
type=str,
default=None,
help="Checkpoint file of model.")
self.parser.add_argument(
'--config',
type=str,
default=None,
help='Config of asr task. Use deault config when it is None.')
self.parser.add_argument(
"--device",
type=str,
default=paddle.get_device(),
help="Choose device to execute model inference.")
self.parser.add_argument(
'-d',
'--job_dump_result',
action='store_true',
help='Save job result into file.')
self.parser.add_argument(
'-v',
'--verbose',
action='store_true',
help='Increase logger verbosity of current task.')
def execute(self, argv: List[str]) -> bool:
"""Command line entry for vector model
Args:
argv (List[str]): command line args list
Returns:
bool:
False: some audio occurs error
True: all audio process success
"""
# stage 0: parse the args and get the required args
parser_args = self.parser.parse_args(argv)
model = parser_args.model
sample_rate = parser_args.sample_rate
config = parser_args.config
ckpt_path = parser_args.ckpt_path
device = parser_args.device
# stage 1: configurate the verbose flag
if not parser_args.verbose:
self.disable_task_loggers()
# stage 2: read the input data and store them as a list
task_source = self.get_task_source(parser_args.input)
logger.info(f"task source: {task_source}")
# stage 3: process the audio one by one
# we do action according the task type
task_result = OrderedDict()
has_exceptions = False
for id_, input_ in task_source.items():
try:
# extract the speaker audio embedding
if parser_args.task == "spk":
logger.info("do vector spk task")
res = self(input_, model, sample_rate, config, ckpt_path,
device)
task_result[id_] = res
elif parser_args.task == "score":
logger.info("do vector score task")
logger.info(f"input content {input_}")
if len(input_.split()) != 2:
logger.error(
f"vector score task input {input_} wav num is not two,"
"that is {len(input_.split())}")
sys.exit(-1)
# get the enroll and test embedding
enroll_audio, test_audio = input_.split()
logger.info(
f"score task, enroll audio: {enroll_audio}, test audio: {test_audio}"
)
enroll_embedding = self(enroll_audio, model, sample_rate,
config, ckpt_path, device)
test_embedding = self(test_audio, model, sample_rate,
config, ckpt_path, device)
# get the score
res = self.get_embeddings_score(enroll_embedding,
test_embedding)
task_result[id_] = res
except Exception as e:
has_exceptions = True
task_result[id_] = f'{e.__class__.__name__}: {e}'
logger.info("task result as follows: ")
logger.info(f"{task_result}")
# stage 4: process the all the task results
self.process_task_results(parser_args.input, task_result,
parser_args.job_dump_result)
# stage 5: return the exception flag
# if return False, somen audio process occurs error
if has_exceptions:
return False
else:
return True
def _get_job_contents(
self, job_input: os.PathLike) -> Dict[str, Union[str, os.PathLike]]:
"""
Read a job input file and return its contents in a dictionary.
Refactor from the Executor._get_job_contents
Args:
job_input (os.PathLike): The job input file.
Returns:
Dict[str, str]: Contents of job input.
"""
job_contents = OrderedDict()
with open(job_input) as f:
for line in f:
line = line.strip()
if not line:
continue
k = line.split(' ')[0]
v = ' '.join(line.split(' ')[1:])
job_contents[k] = v
return job_contents
def get_embeddings_score(self, enroll_embedding, test_embedding):
"""get the enroll embedding and test embedding score
Args:
enroll_embedding (numpy.array): shape: (emb_size), enroll audio embedding
test_embedding (numpy.array): shape: (emb_size), test audio embedding
Returns:
score: the score between enroll embedding and test embedding
"""
if not hasattr(self, "score_func"):
self.score_func = paddle.nn.CosineSimilarity(axis=0)
logger.info("create the cosine score function ")
score = self.score_func(
paddle.to_tensor(enroll_embedding),
paddle.to_tensor(test_embedding))
return score.item()
@stats_wrapper
def __call__(self,
audio_file: os.PathLike,
model: str='ecapatdnn_voxceleb12',
sample_rate: int=16000,
config: os.PathLike=None,
ckpt_path: os.PathLike=None,
device=paddle.get_device()):
"""Extract the audio embedding
Args:
audio_file (os.PathLike): audio path,
whose format must be wav and sample rate must be matched the model
model (str, optional): mode type, which is been loaded from the pretrained model list.
Defaults to 'ecapatdnn-voxceleb12'.
sample_rate (int, optional): model sample rate. Defaults to 16000.
config (os.PathLike, optional): yaml config. Defaults to None.
ckpt_path (os.PathLike, optional): pretrained model path. Defaults to None.
device (optional): paddle running host device. Defaults to paddle.get_device().
Returns:
dict: return the audio embedding and the embedding shape
"""
# stage 0: check the audio format
audio_file = os.path.abspath(audio_file)
if not self._check(audio_file, sample_rate):
sys.exit(-1)
# stage 1: set the paddle runtime host device
logger.info(f"device type: {device}")
paddle.device.set_device(device)
# stage 2: read the specific pretrained model
self._init_from_path(model, sample_rate, config, ckpt_path)
# stage 3: preprocess the audio and get the audio feat
self.preprocess(model, audio_file)
# stage 4: infer the model and get the audio embedding
self.infer(model)
# stage 5: process the result and set them to output dict
res = self.postprocess()
return res
def _get_pretrained_path(self, tag: str) -> os.PathLike:
"""get the neural network path from the pretrained model list
we stored all the pretained mode in the variable `pretrained_models`
Args:
tag (str): model tag in the pretrained model list
Returns:
os.PathLike: the downloaded pretrained model path in the disk
"""
support_models = list(pretrained_models.keys())
assert tag in pretrained_models, \
'The model "{}" you want to use has not been supported,'\
'please choose other models.\n' \
'The support models includes\n\t\t{}'.format(tag, "\n\t\t".join(support_models))
res_path = os.path.join(MODEL_HOME, tag)
decompressed_path = download_and_decompress(pretrained_models[tag],
res_path)
decompressed_path = os.path.abspath(decompressed_path)
logger.info(
'Use pretrained model stored in: {}'.format(decompressed_path))
return decompressed_path
def _init_from_path(self,
model_type: str='ecapatdnn_voxceleb12',
sample_rate: int=16000,
cfg_path: Optional[os.PathLike]=None,
ckpt_path: Optional[os.PathLike]=None):
"""Init the neural network from the model path
Args:
model_type (str, optional): model tag in the pretrained model list.
Defaults to 'ecapatdnn_voxceleb12'.
sample_rate (int, optional): model sample rate.
Defaults to 16000.
cfg_path (Optional[os.PathLike], optional): yaml config file path.
Defaults to None.
ckpt_path (Optional[os.PathLike], optional): the pretrained model path, which is stored in the disk.
Defaults to None.
"""
# stage 0: avoid to init the mode again
if hasattr(self, "model"):
logger.info("Model has been initialized")
return
# stage 1: get the model and config path
# if we want init the network from the model stored in the disk,
# we must pass the config path and the ckpt model path
if cfg_path is None or ckpt_path is None:
# get the mode from pretrained list
sample_rate_str = "16k" if sample_rate == 16000 else "8k"
tag = model_type + "-" + sample_rate_str
logger.info(f"load the pretrained model: {tag}")
# get the model from the pretrained list
# we download the pretrained model and store it in the res_path
res_path = self._get_pretrained_path(tag)
self.res_path = res_path
self.cfg_path = os.path.join(res_path,
pretrained_models[tag]['cfg_path'])
self.ckpt_path = os.path.join(
res_path, pretrained_models[tag]['ckpt_path'] + '.pdparams')
else:
# get the model from disk
self.cfg_path = os.path.abspath(cfg_path)
self.ckpt_path = os.path.abspath(ckpt_path + ".pdparams")
self.res_path = os.path.dirname(
os.path.dirname(os.path.abspath(self.cfg_path)))
logger.info(f"start to read the ckpt from {self.ckpt_path}")
logger.info(f"read the config from {self.cfg_path}")
logger.info(f"get the res path {self.res_path}")
# stage 2: read and config and init the model body
self.config = CfgNode(new_allowed=True)
self.config.merge_from_file(self.cfg_path)
# stage 3: get the model name to instance the model network with dynamic_import
logger.info("start to dynamic import the model class")
model_name = model_type[:model_type.rindex('_')]
logger.info(f"model name {model_name}")
model_class = dynamic_import(model_name, model_alias)
model_conf = self.config.model
backbone = model_class(**model_conf)
model = SpeakerIdetification(
backbone=backbone, num_class=self.config.num_speakers)
self.model = model
self.model.eval()
# stage 4: load the model parameters
logger.info("start to set the model parameters to model")
model_dict = paddle.load(self.ckpt_path)
self.model.set_state_dict(model_dict)
logger.info("create the model instance success")
@paddle.no_grad()
def infer(self, model_type: str):
"""Infer the model to get the embedding
Args:
model_type (str): speaker verification model type
"""
# stage 0: get the feat and length from _inputs
feats = self._inputs["feats"]
lengths = self._inputs["lengths"]
logger.info("start to do backbone network model forward")
logger.info(
f"feats shape:{feats.shape}, lengths shape: {lengths.shape}")
# stage 1: get the audio embedding
# embedding from (1, emb_size, 1) -> (emb_size)
embedding = self.model.backbone(feats, lengths).squeeze().numpy()
logger.info(f"embedding size: {embedding.shape}")
# stage 2: put the embedding and dim info to _outputs property
# the embedding type is numpy.array
self._outputs["embedding"] = embedding
def postprocess(self) -> Union[str, os.PathLike]:
"""Return the audio embedding info
Returns:
Union[str, os.PathLike]: audio embedding info
"""
embedding = self._outputs["embedding"]
return embedding
def preprocess(self, model_type: str, input_file: Union[str, os.PathLike]):
"""Extract the audio feat
Args:
model_type (str): speaker verification model type
input_file (Union[str, os.PathLike]): audio file path
"""
audio_file = input_file
if isinstance(audio_file, (str, os.PathLike)):
logger.info(f"Preprocess audio file: {audio_file}")
# stage 1: load the audio sample points
# Note: this process must match the training process
waveform, sr = load_audio(audio_file)
logger.info(f"load the audio sample points, shape is: {waveform.shape}")
# stage 2: get the audio feat
# Note: Now we only support fbank feature
try:
feat = melspectrogram(
x=waveform,
sr=self.config.sr,
n_mels=self.config.n_mels,
window_size=self.config.window_size,
hop_length=self.config.hop_size)
logger.info(f"extract the audio feat, shape is: {feat.shape}")
except Exception as e:
logger.info(f"feat occurs exception {e}")
sys.exit(-1)
feat = paddle.to_tensor(feat).unsqueeze(0)
# in inference period, the lengths is all one without padding
lengths = paddle.ones([1])
# stage 3: we do feature normalize,
# Now we assume that the feat must do normalize
feat = feature_normalize(feat, mean_norm=True, std_norm=False)
# stage 4: store the feat and length in the _inputs,
# which will be used in other function
logger.info(f"feats shape: {feat.shape}")
self._inputs["feats"] = feat
self._inputs["lengths"] = lengths
logger.info("audio extract the feat success")
def _check(self, audio_file: str, sample_rate: int):
"""Check if the model sample match the audio sample rate
Args:
audio_file (str): audio file path, which will be extracted the embedding
sample_rate (int): the desired model sample rate
Returns:
bool: return if the audio sample rate matches the model sample rate
"""
self.sample_rate = sample_rate
if self.sample_rate != 16000 and self.sample_rate != 8000:
logger.error(
"invalid sample rate, please input --sr 8000 or --sr 16000")
return False
if isinstance(audio_file, (str, os.PathLike)):
if not os.path.isfile(audio_file):
logger.error("Please input the right audio file path")
return False
logger.info("checking the aduio file format......")
try:
audio, audio_sample_rate = soundfile.read(
audio_file, dtype="float32", always_2d=True)
except Exception as e:
logger.exception(e)
logger.error(
"can not open the audio file, please check the audio file format is 'wav'. \n \
you can try to use sox to change the file format.\n \
For example: \n \
sample rate: 16k \n \
sox input_audio.xx --rate 16k --bits 16 --channels 1 output_audio.wav \n \
sample rate: 8k \n \
sox input_audio.xx --rate 8k --bits 16 --channels 1 output_audio.wav \n \
")
return False
logger.info(f"The sample rate is {audio_sample_rate}")
if audio_sample_rate != self.sample_rate:
logger.error("The sample rate of the input file is not {}.\n \
The program will resample the wav file to {}.\n \
If the result does not meet your expectations\n \
Please input the 16k 16 bit 1 channel wav file. \
".format(self.sample_rate, self.sample_rate))
sys.exit(-1)
else:
logger.info("The audio file format is right")
return True