You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/__init__.py

410 lines
12 KiB

4 years ago
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
E2E/Streaming Transformer/Conformer ASR (#578) * add cmvn and label smoothing loss layer * add layer for transformer * add glu and conformer conv * add torch compatiable hack, mask funcs * not hack size since it exists * add test; attention * add attention, common utils, hack paddle * add audio utils * conformer batch padding mask bug fix #223 * fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2 * fix ci * fix ci * add encoder * refactor egs * add decoder * refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils * refactor docs * add fix * fix readme * fix bugs, refactor collator, add pad_sequence, fix ckpt bugs * fix docstring * refactor data feed order * add u2 model * refactor cmvn, test * add utils * add u2 config * fix bugs * fix bugs * fix autograd maybe has problem when using inplace operation * refactor data, build vocab; add format data * fix text featurizer * refactor build vocab * add fbank, refactor feature of speech * refactor audio feat * refactor data preprare * refactor data * model init from config * add u2 bins * flake8 * can train * fix bugs, add coverage, add scripts * test can run * fix data * speed perturb with sox * add spec aug * fix for train * fix train logitc * fix logger * log valid loss, time dataset process * using np for speed perturb, remove some debug log of grad clip * fix logger * fix build vocab * fix logger name * using module logger as default * fix * fix install * reorder imports * fix board logger * fix logger * kaldi fbank and mfcc * fix cmvn and print prarams * fix add_eos_sos and cmvn * fix cmvn compute * fix logger and cmvn * fix subsampling, label smoothing loss, remove useless * add notebook test * fix log * fix tb logger * multi gpu valid * fix log * fix log * fix config * fix compute cmvn, need paddle 2.1 * add cmvn notebook * fix layer tools * fix compute cmvn * add rtf * fix decoding * fix layer tools * fix log, add avg script * more avg and test info * fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh; * add vimrc * refactor tiny script, add transformer and stream conf * spm demo; librisppech scripts and confs * fix log * add librispeech scripts * refactor data pipe; fix conf; fix u2 default params * fix bugs * refactor aishell scripts * fix test * fix cmvn * fix s0 scripts * fix ds2 scripts and bugs * fix dev & test dataset filter * fix dataset filter * filter dev * fix ckpt path * filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test * add comment * add syllable doc * fix ds2 configs * add doc * add pypinyin tools * fix decoder using blank_id=0 * mmseg with pybind11 * format code
4 years ago
from typing import Any
from typing import List
from typing import Tuple
from typing import Union
import paddle
from paddle import nn
from paddle.fluid import core
from paddle.nn import functional as F
from deepspeech.utils.log import Log
#TODO(Hui Zhang): remove fluid import
logger = Log(__name__).getlog()
########### hcak logging #############
logger.warn = logger.warning
########### hcak paddle #############
paddle.half = 'float16'
paddle.float = 'float32'
paddle.double = 'float64'
paddle.short = 'int16'
paddle.int = 'int32'
paddle.long = 'int64'
paddle.uint16 = 'uint16'
paddle.cdouble = 'complex128'
def convert_dtype_to_string(tensor_dtype):
"""
Convert the data type in numpy to the data type in Paddle
Args:
tensor_dtype(core.VarDesc.VarType): the data type in numpy.
Returns:
core.VarDesc.VarType: the data type in Paddle.
"""
dtype = tensor_dtype
if dtype == core.VarDesc.VarType.FP32:
return paddle.float32
elif dtype == core.VarDesc.VarType.FP64:
return paddle.float64
elif dtype == core.VarDesc.VarType.FP16:
return paddle.float16
elif dtype == core.VarDesc.VarType.INT32:
return paddle.int32
elif dtype == core.VarDesc.VarType.INT16:
return paddle.int16
elif dtype == core.VarDesc.VarType.INT64:
return paddle.int64
elif dtype == core.VarDesc.VarType.BOOL:
return paddle.bool
elif dtype == core.VarDesc.VarType.BF16:
# since there is still no support for bfloat16 in NumPy,
# uint16 is used for casting bfloat16
return paddle.uint16
elif dtype == core.VarDesc.VarType.UINT8:
return paddle.uint8
elif dtype == core.VarDesc.VarType.INT8:
return paddle.int8
elif dtype == core.VarDesc.VarType.COMPLEX64:
return paddle.complex64
elif dtype == core.VarDesc.VarType.COMPLEX128:
return paddle.complex128
else:
raise ValueError("Not supported tensor dtype %s" % dtype)
if not hasattr(paddle, 'softmax'):
logger.warn("register user softmax to paddle, remove this when fixed!")
setattr(paddle, 'softmax', paddle.nn.functional.softmax)
if not hasattr(paddle, 'log_softmax'):
logger.warn("register user log_softmax to paddle, remove this when fixed!")
setattr(paddle, 'log_softmax', paddle.nn.functional.log_softmax)
if not hasattr(paddle, 'sigmoid'):
logger.warn("register user sigmoid to paddle, remove this when fixed!")
setattr(paddle, 'sigmoid', paddle.nn.functional.sigmoid)
if not hasattr(paddle, 'log_sigmoid'):
logger.warn("register user log_sigmoid to paddle, remove this when fixed!")
setattr(paddle, 'log_sigmoid', paddle.nn.functional.log_sigmoid)
if not hasattr(paddle, 'relu'):
logger.warn("register user relu to paddle, remove this when fixed!")
setattr(paddle, 'relu', paddle.nn.functional.relu)
def cat(xs, dim=0):
return paddle.concat(xs, axis=dim)
if not hasattr(paddle, 'cat'):
logger.warn(
"override cat of paddle if exists or register, remove this when fixed!")
paddle.cat = cat
########### hcak paddle.Tensor #############
def item(x: paddle.Tensor):
return x.numpy().item()
if not hasattr(paddle.Tensor, 'item'):
logger.warn(
"override item of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.item = item
def func_long(x: paddle.Tensor):
return paddle.cast(x, paddle.long)
if not hasattr(paddle.Tensor, 'long'):
logger.warn(
"override long of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.long = func_long
if not hasattr(paddle.Tensor, 'numel'):
logger.warn(
"override numel of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.numel = paddle.numel
def new_full(x: paddle.Tensor,
size: Union[List[int], Tuple[int], paddle.Tensor],
fill_value: Union[float, int, bool, paddle.Tensor],
dtype=None):
return paddle.full(size, fill_value, dtype=x.dtype)
if not hasattr(paddle.Tensor, 'new_full'):
logger.warn(
"override new_full of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.new_full = new_full
def eq(xs: paddle.Tensor, ys: Union[paddle.Tensor, float]) -> paddle.Tensor:
if convert_dtype_to_string(xs.dtype) == paddle.bool:
xs = xs.astype(paddle.int)
return xs.equal(
paddle.to_tensor(
ys, dtype=convert_dtype_to_string(xs.dtype), place=xs.place))
if not hasattr(paddle.Tensor, 'eq'):
logger.warn(
"override eq of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.eq = eq
if not hasattr(paddle, 'eq'):
logger.warn(
"override eq of paddle if exists or register, remove this when fixed!")
paddle.eq = eq
def contiguous(xs: paddle.Tensor) -> paddle.Tensor:
return xs
if not hasattr(paddle.Tensor, 'contiguous'):
logger.warn(
"override contiguous of paddle.Tensor if exists or register, remove this when fixed!"
)
paddle.Tensor.contiguous = contiguous
def size(xs: paddle.Tensor, *args: int) -> paddle.Tensor:
nargs = len(args)
assert (nargs <= 1)
s = paddle.shape(xs)
if nargs == 1:
return s[args[0]]
else:
return s
#`to_static` do not process `size` property, maybe some `paddle` api dependent on it.
logger.warn(
"override size of paddle.Tensor "
"(`to_static` do not process `size` property, maybe some `paddle` api dependent on it), remove this when fixed!"
)
paddle.Tensor.size = size
def view(xs: paddle.Tensor, *args: int) -> paddle.Tensor:
return xs.reshape(args)
if not hasattr(paddle.Tensor, 'view'):
logger.warn("register user view to paddle.Tensor, remove this when fixed!")
paddle.Tensor.view = view
def view_as(xs: paddle.Tensor, ys: paddle.Tensor) -> paddle.Tensor:
return xs.reshape(ys.size())
if not hasattr(paddle.Tensor, 'view_as'):
logger.warn(
"register user view_as to paddle.Tensor, remove this when fixed!")
paddle.Tensor.view_as = view_as
def is_broadcastable(shp1, shp2):
for a, b in zip(shp1[::-1], shp2[::-1]):
if a == 1 or b == 1 or a == b:
pass
else:
return False
return True
def masked_fill(xs: paddle.Tensor,
mask: paddle.Tensor,
value: Union[float, int]):
assert is_broadcastable(xs.shape, mask.shape) is True
bshape = paddle.broadcast_shape(xs.shape, mask.shape)
mask = mask.broadcast_to(bshape)
trues = paddle.ones_like(xs) * value
xs = paddle.where(mask, trues, xs)
return xs
if not hasattr(paddle.Tensor, 'masked_fill'):
logger.warn(
"register user masked_fill to paddle.Tensor, remove this when fixed!")
paddle.Tensor.masked_fill = masked_fill
def masked_fill_(xs: paddle.Tensor,
mask: paddle.Tensor,
value: Union[float, int]) -> paddle.Tensor:
assert is_broadcastable(xs.shape, mask.shape) is True
bshape = paddle.broadcast_shape(xs.shape, mask.shape)
mask = mask.broadcast_to(bshape)
trues = paddle.ones_like(xs) * value
ret = paddle.where(mask, trues, xs)
paddle.assign(ret.detach(), output=xs)
return xs
if not hasattr(paddle.Tensor, 'masked_fill_'):
logger.warn(
"register user masked_fill_ to paddle.Tensor, remove this when fixed!")
paddle.Tensor.masked_fill_ = masked_fill_
def fill_(xs: paddle.Tensor, value: Union[float, int]) -> paddle.Tensor:
val = paddle.full_like(xs, value)
paddle.assign(val.detach(), output=xs)
return xs
if not hasattr(paddle.Tensor, 'fill_'):
logger.warn("register user fill_ to paddle.Tensor, remove this when fixed!")
paddle.Tensor.fill_ = fill_
def repeat(xs: paddle.Tensor, *size: Any) -> paddle.Tensor:
return paddle.tile(xs, size)
if not hasattr(paddle.Tensor, 'repeat'):
logger.warn(
"register user repeat to paddle.Tensor, remove this when fixed!")
paddle.Tensor.repeat = repeat
if not hasattr(paddle.Tensor, 'softmax'):
logger.warn(
"register user softmax to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'softmax', paddle.nn.functional.softmax)
if not hasattr(paddle.Tensor, 'sigmoid'):
logger.warn(
"register user sigmoid to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'sigmoid', paddle.nn.functional.sigmoid)
if not hasattr(paddle.Tensor, 'relu'):
logger.warn("register user relu to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'relu', paddle.nn.functional.relu)
def type_as(x: paddle.Tensor, other: paddle.Tensor) -> paddle.Tensor:
return x.astype(other.dtype)
if not hasattr(paddle.Tensor, 'type_as'):
logger.warn(
"register user type_as to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'type_as', type_as)
def to(x: paddle.Tensor, *args, **kwargs) -> paddle.Tensor:
assert len(args) == 1
if isinstance(args[0], str): # dtype
return x.astype(args[0])
elif isinstance(args[0], paddle.Tensor): #Tensor
return x.astype(args[0].dtype)
else: # Device
return x
if not hasattr(paddle.Tensor, 'to'):
logger.warn("register user to to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'to', to)
def func_float(x: paddle.Tensor) -> paddle.Tensor:
return x.astype(paddle.float)
if not hasattr(paddle.Tensor, 'float'):
logger.warn("register user float to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'float', func_float)
4 years ago
def func_int(x: paddle.Tensor) -> paddle.Tensor:
return x.astype(paddle.int)
if not hasattr(paddle.Tensor, 'int'):
logger.warn("register user int to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'int', func_int)
E2E/Streaming Transformer/Conformer ASR (#578) * add cmvn and label smoothing loss layer * add layer for transformer * add glu and conformer conv * add torch compatiable hack, mask funcs * not hack size since it exists * add test; attention * add attention, common utils, hack paddle * add audio utils * conformer batch padding mask bug fix #223 * fix typo, python infer fix rnn mem opt name error and batchnorm1d, will be available at 2.0.2 * fix ci * fix ci * add encoder * refactor egs * add decoder * refactor ctc, add ctc align, refactor ckpt, add warmup lr scheduler, cmvn utils * refactor docs * add fix * fix readme * fix bugs, refactor collator, add pad_sequence, fix ckpt bugs * fix docstring * refactor data feed order * add u2 model * refactor cmvn, test * add utils * add u2 config * fix bugs * fix bugs * fix autograd maybe has problem when using inplace operation * refactor data, build vocab; add format data * fix text featurizer * refactor build vocab * add fbank, refactor feature of speech * refactor audio feat * refactor data preprare * refactor data * model init from config * add u2 bins * flake8 * can train * fix bugs, add coverage, add scripts * test can run * fix data * speed perturb with sox * add spec aug * fix for train * fix train logitc * fix logger * log valid loss, time dataset process * using np for speed perturb, remove some debug log of grad clip * fix logger * fix build vocab * fix logger name * using module logger as default * fix * fix install * reorder imports * fix board logger * fix logger * kaldi fbank and mfcc * fix cmvn and print prarams * fix add_eos_sos and cmvn * fix cmvn compute * fix logger and cmvn * fix subsampling, label smoothing loss, remove useless * add notebook test * fix log * fix tb logger * multi gpu valid * fix log * fix log * fix config * fix compute cmvn, need paddle 2.1 * add cmvn notebook * fix layer tools * fix compute cmvn * add rtf * fix decoding * fix layer tools * fix log, add avg script * more avg and test info * fix dataset pickle problem; using 2.1 paddle; num_workers can > 0; ckpt save in exp dir;fix setup.sh; * add vimrc * refactor tiny script, add transformer and stream conf * spm demo; librisppech scripts and confs * fix log * add librispeech scripts * refactor data pipe; fix conf; fix u2 default params * fix bugs * refactor aishell scripts * fix test * fix cmvn * fix s0 scripts * fix ds2 scripts and bugs * fix dev & test dataset filter * fix dataset filter * filter dev * fix ckpt path * filter test, since librispeech will cause OOM, but all test wer will be worse, since mismatch train with test * add comment * add syllable doc * fix ds2 configs * add doc * add pypinyin tools * fix decoder using blank_id=0 * mmseg with pybind11 * format code
4 years ago
def tolist(x: paddle.Tensor) -> List[Any]:
return x.numpy().tolist()
if not hasattr(paddle.Tensor, 'tolist'):
logger.warn(
"register user tolist to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'tolist', tolist)
########### hcak paddle.nn.functional #############
def glu(x: paddle.Tensor, axis=-1) -> paddle.Tensor:
"""The gated linear unit (GLU) activation."""
a, b = x.split(2, axis=axis)
act_b = F.sigmoid(b)
return a * act_b
if not hasattr(paddle.nn.functional, 'glu'):
logger.warn(
"register user glu to paddle.nn.functional, remove this when fixed!")
setattr(paddle.nn.functional, 'glu', glu)
# def softplus(x):
# """Softplus function."""
# if hasattr(paddle.nn.functional, 'softplus'):
# #return paddle.nn.functional.softplus(x.float()).type_as(x)
# return paddle.nn.functional.softplus(x)
# else:
# raise NotImplementedError
# def gelu_accurate(x):
# """Gaussian Error Linear Units (GELU) activation."""
# # [reference] https://github.com/pytorch/fairseq/blob/e75cff5f2c1d62f12dc911e0bf420025eb1a4e33/fairseq/modules/gelu.py
# if not hasattr(gelu_accurate, "_a"):
# gelu_accurate._a = math.sqrt(2 / math.pi)
# return 0.5 * x * (1 + paddle.tanh(gelu_accurate._a *
# (x + 0.044715 * paddle.pow(x, 3))))
# def gelu(x):
# """Gaussian Error Linear Units (GELU) activation."""
# if hasattr(nn.functional, 'gelu'):
# #return nn.functional.gelu(x.float()).type_as(x)
# return nn.functional.gelu(x)
# else:
# return x * 0.5 * (1.0 + paddle.erf(x / math.sqrt(2.0)))
########### hcak paddle.nn #############
class GLU(nn.Layer):
"""Gated Linear Units (GLU) Layer"""
def __init__(self, dim: int=-1):
super().__init__()
self.dim = dim
def forward(self, xs):
return glu(xs, dim=self.dim)
if not hasattr(paddle.nn, 'GLU'):
logger.warn("register user GLU to paddle.nn, remove this when fixed!")
setattr(paddle.nn, 'GLU', GLU)