|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Evaluation for DeepSpeech2 model."""
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import soundfile
|
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
|
|
|
from paddlespeech.audio.transform.transformation import Transformation
|
|
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
|
|
from paddlespeech.s2t.models.ds2 import DeepSpeech2Model
|
|
|
|
from paddlespeech.s2t.training.cli import default_argument_parser
|
|
|
|
from paddlespeech.s2t.utils import mp_tools
|
|
|
|
from paddlespeech.s2t.utils.checkpoint import Checkpoint
|
|
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
from paddlespeech.s2t.utils.utility import print_arguments
|
|
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
|
|
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
|
|
|
|
|
|
|
|
class DeepSpeech2Tester_hub():
|
|
|
|
def __init__(self, config, args):
|
|
|
|
self.args = args
|
|
|
|
self.config = config
|
|
|
|
self.audio_file = args.audio_file
|
|
|
|
|
|
|
|
self.preprocess_conf = config.preprocess_config
|
|
|
|
self.preprocess_args = {"train": False}
|
|
|
|
self.preprocessing = Transformation(self.preprocess_conf)
|
|
|
|
|
|
|
|
self.text_feature = TextFeaturizer(
|
|
|
|
unit_type=config.unit_type,
|
|
|
|
vocab=config.vocab_filepath,
|
|
|
|
spm_model_prefix=config.spm_model_prefix)
|
|
|
|
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
|
|
|
|
|
|
|
|
def compute_result_transcripts(self, audio, audio_len, vocab_list, cfg):
|
|
|
|
decode_batch_size = cfg.decode_batch_size
|
|
|
|
self.model.decoder.init_decoder(
|
|
|
|
decode_batch_size, vocab_list, cfg.decoding_method,
|
|
|
|
cfg.lang_model_path, cfg.alpha, cfg.beta, cfg.beam_size,
|
|
|
|
cfg.cutoff_prob, cfg.cutoff_top_n, cfg.num_proc_bsearch)
|
|
|
|
result_transcripts = self.model.decode(audio, audio_len)
|
|
|
|
return result_transcripts
|
|
|
|
|
|
|
|
@mp_tools.rank_zero_only
|
|
|
|
@paddle.no_grad()
|
|
|
|
def test(self):
|
|
|
|
self.model.eval()
|
|
|
|
cfg = self.config
|
|
|
|
audio_file = self.audio_file
|
|
|
|
|
|
|
|
audio, sample_rate = soundfile.read(
|
|
|
|
self.audio_file, dtype="int16", always_2d=True)
|
|
|
|
|
|
|
|
audio = audio[:, 0]
|
|
|
|
logger.info(f"audio shape: {audio.shape}")
|
|
|
|
|
|
|
|
# fbank
|
|
|
|
feat = self.preprocessing(audio, **self.preprocess_args)
|
|
|
|
logger.info(f"feat shape: {feat.shape}")
|
|
|
|
|
|
|
|
audio_len = paddle.to_tensor(feat.shape[0])
|
|
|
|
audio = paddle.to_tensor(feat, dtype='float32').unsqueeze(axis=0)
|
|
|
|
|
|
|
|
result_transcripts = self.compute_result_transcripts(
|
|
|
|
audio, audio_len, self.text_feature.vocab_list, cfg.decode)
|
|
|
|
|
|
|
|
logger.info("result_transcripts: " + result_transcripts[0])
|
|
|
|
|
|
|
|
def run_test(self):
|
|
|
|
self.resume()
|
|
|
|
try:
|
|
|
|
self.test()
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
exit(-1)
|
|
|
|
|
|
|
|
def setup(self):
|
|
|
|
"""Setup the experiment.
|
|
|
|
"""
|
|
|
|
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
|
|
|
|
|
|
|
|
self.setup_output_dir()
|
|
|
|
self.setup_checkpointer()
|
|
|
|
|
|
|
|
self.setup_model()
|
|
|
|
|
|
|
|
def setup_output_dir(self):
|
|
|
|
"""Create a directory used for output.
|
|
|
|
"""
|
|
|
|
# output dir
|
|
|
|
if self.args.output:
|
|
|
|
output_dir = Path(self.args.output).expanduser()
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
else:
|
|
|
|
output_dir = Path(
|
|
|
|
self.args.checkpoint_path).expanduser().parent.parent
|
|
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.output_dir = output_dir
|
|
|
|
|
|
|
|
def setup_model(self):
|
|
|
|
config = self.config.clone()
|
|
|
|
with UpdateConfig(config):
|
|
|
|
config.input_dim = config.feat_dim
|
|
|
|
config.output_dim = self.text_feature.vocab_size
|
|
|
|
model = DeepSpeech2Model.from_config(config)
|
|
|
|
self.model = model
|
|
|
|
|
|
|
|
def setup_checkpointer(self):
|
|
|
|
"""Create a directory used to save checkpoints into.
|
|
|
|
|
|
|
|
It is "checkpoints" inside the output directory.
|
|
|
|
"""
|
|
|
|
# checkpoint dir
|
|
|
|
checkpoint_dir = self.output_dir / "checkpoints"
|
|
|
|
checkpoint_dir.mkdir(exist_ok=True)
|
|
|
|
|
|
|
|
self.checkpoint_dir = checkpoint_dir
|
|
|
|
|
|
|
|
self.checkpoint = Checkpoint(
|
|
|
|
kbest_n=self.config.checkpoint.kbest_n,
|
|
|
|
latest_n=self.config.checkpoint.latest_n)
|
|
|
|
|
|
|
|
def resume(self):
|
|
|
|
"""Resume from the checkpoint at checkpoints in the output
|
|
|
|
directory or load a specified checkpoint.
|
|
|
|
"""
|
|
|
|
params_path = self.args.checkpoint_path + ".pdparams"
|
|
|
|
model_dict = paddle.load(params_path)
|
|
|
|
self.model.set_state_dict(model_dict)
|
|
|
|
|
|
|
|
|
|
|
|
def check(audio_file):
|
|
|
|
logger.info("checking the audio file format......")
|
|
|
|
try:
|
|
|
|
sig, sample_rate = soundfile.read(audio_file)
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(str(e))
|
|
|
|
logger.error(
|
|
|
|
"can not open the wav file, please check the audio file format")
|
|
|
|
sys.exit(-1)
|
|
|
|
logger.info("The sample rate is %d" % sample_rate)
|
|
|
|
assert (sample_rate == 16000)
|
|
|
|
logger.info("The audio file format is right")
|
|
|
|
|
|
|
|
|
|
|
|
def main_sp(config, args):
|
|
|
|
exp = DeepSpeech2Tester_hub(config, args)
|
|
|
|
exp.setup()
|
|
|
|
exp.run_test()
|
|
|
|
|
|
|
|
|
|
|
|
def main(config, args):
|
|
|
|
main_sp(config, args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = default_argument_parser()
|
|
|
|
parser.add_argument("--audio_file", type=str, help='audio file path')
|
|
|
|
# save asr result to
|
|
|
|
parser.add_argument(
|
|
|
|
"--result_file", type=str, help="path of save the asr result")
|
|
|
|
args = parser.parse_args()
|
|
|
|
print_arguments(args, globals())
|
|
|
|
if not os.path.isfile(args.audio_file):
|
|
|
|
print("Please input the audio file path")
|
|
|
|
sys.exit(-1)
|
|
|
|
check(args.audio_file)
|
|
|
|
|
|
|
|
# https://yaml.org/type/float.html
|
|
|
|
config = CfgNode(new_allowed=True)
|
|
|
|
if args.config:
|
|
|
|
config.merge_from_file(args.config)
|
|
|
|
if args.decode_cfg:
|
|
|
|
decode_confs = CfgNode(new_allowed=True)
|
|
|
|
decode_confs.merge_from_file(args.decode_cfg)
|
|
|
|
config.decode = decode_confs
|
|
|
|
if args.opts:
|
|
|
|
config.merge_from_list(args.opts)
|
|
|
|
config.freeze()
|
|
|
|
print(config)
|
|
|
|
if args.dump_config:
|
|
|
|
with open(args.dump_config, 'w') as f:
|
|
|
|
print(config, file=f)
|
|
|
|
|
|
|
|
main(config, args)
|