|
|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import base64
|
|
|
|
import time
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
from paddlespeech.cli.log import logger
|
|
|
|
from paddlespeech.cli.tts.infer import TTSExecutor
|
|
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
|
|
from paddlespeech.server.utils.audio_process import float2pcm
|
|
|
|
from paddlespeech.server.utils.util import get_chunks
|
|
|
|
|
|
|
|
__all__ = ['TTSEngine']
|
|
|
|
|
|
|
|
|
|
|
|
class TTSServerExecutor(TTSExecutor):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
pass
|
|
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
|
def infer(
|
|
|
|
self,
|
|
|
|
text: str,
|
|
|
|
lang: str='zh',
|
|
|
|
am: str='fastspeech2_csmsc',
|
|
|
|
spk_id: int=0,
|
|
|
|
am_block: int=42,
|
|
|
|
am_pad: int=12,
|
|
|
|
voc_block: int=14,
|
|
|
|
voc_pad: int=14, ):
|
|
|
|
"""
|
|
|
|
Model inference and result stored in self.output.
|
|
|
|
"""
|
|
|
|
am_name = am[:am.rindex('_')]
|
|
|
|
am_dataset = am[am.rindex('_') + 1:]
|
|
|
|
get_tone_ids = False
|
|
|
|
merge_sentences = False
|
|
|
|
frontend_st = time.time()
|
|
|
|
if lang == 'zh':
|
|
|
|
input_ids = self.frontend.get_input_ids(
|
|
|
|
text,
|
|
|
|
merge_sentences=merge_sentences,
|
|
|
|
get_tone_ids=get_tone_ids)
|
|
|
|
phone_ids = input_ids["phone_ids"]
|
|
|
|
if get_tone_ids:
|
|
|
|
tone_ids = input_ids["tone_ids"]
|
|
|
|
elif lang == 'en':
|
|
|
|
input_ids = self.frontend.get_input_ids(
|
|
|
|
text, merge_sentences=merge_sentences)
|
|
|
|
phone_ids = input_ids["phone_ids"]
|
|
|
|
else:
|
|
|
|
print("lang should in {'zh', 'en'}!")
|
|
|
|
self.frontend_time = time.time() - frontend_st
|
|
|
|
|
|
|
|
for i in range(len(phone_ids)):
|
|
|
|
am_st = time.time()
|
|
|
|
part_phone_ids = phone_ids[i]
|
|
|
|
# am
|
|
|
|
if am_name == 'speedyspeech':
|
|
|
|
part_tone_ids = tone_ids[i]
|
|
|
|
mel = self.am_inference(part_phone_ids, part_tone_ids)
|
|
|
|
# fastspeech2
|
|
|
|
else:
|
|
|
|
# multi speaker
|
|
|
|
if am_dataset in {"aishell3", "vctk"}:
|
|
|
|
mel = self.am_inference(
|
|
|
|
part_phone_ids, spk_id=paddle.to_tensor(spk_id))
|
|
|
|
else:
|
|
|
|
mel = self.am_inference(part_phone_ids)
|
|
|
|
am_et = time.time()
|
|
|
|
|
|
|
|
# voc streaming
|
|
|
|
voc_upsample = self.voc_config.n_shift
|
|
|
|
mel_chunks = get_chunks(mel, voc_block, voc_pad, "voc")
|
|
|
|
chunk_num = len(mel_chunks)
|
|
|
|
voc_st = time.time()
|
|
|
|
for i, mel_chunk in enumerate(mel_chunks):
|
|
|
|
sub_wav = self.voc_inference(mel_chunk)
|
|
|
|
front_pad = min(i * voc_block, voc_pad)
|
|
|
|
|
|
|
|
if i == 0:
|
|
|
|
sub_wav = sub_wav[:voc_block * voc_upsample]
|
|
|
|
elif i == chunk_num - 1:
|
|
|
|
sub_wav = sub_wav[front_pad * voc_upsample:]
|
|
|
|
else:
|
|
|
|
sub_wav = sub_wav[front_pad * voc_upsample:(
|
|
|
|
front_pad + voc_block) * voc_upsample]
|
|
|
|
|
|
|
|
yield sub_wav
|
|
|
|
|
|
|
|
|
|
|
|
class TTSEngine(BaseEngine):
|
|
|
|
"""TTS server engine
|
|
|
|
|
|
|
|
Args:
|
|
|
|
metaclass: Defaults to Singleton.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, name=None):
|
|
|
|
"""Initialize TTS server engine
|
|
|
|
"""
|
|
|
|
super(TTSEngine, self).__init__()
|
|
|
|
|
|
|
|
def init(self, config: dict) -> bool:
|
|
|
|
self.executor = TTSServerExecutor()
|
|
|
|
self.config = config
|
|
|
|
assert "fastspeech2_csmsc" in config.am and (
|
|
|
|
config.voc == "hifigan_csmsc-zh" or config.voc == "mb_melgan_csmsc"
|
|
|
|
), 'Please check config, am support: fastspeech2, voc support: hifigan_csmsc-zh or mb_melgan_csmsc.'
|
|
|
|
try:
|
|
|
|
if self.config.device:
|
|
|
|
self.device = self.config.device
|
|
|
|
else:
|
|
|
|
self.device = paddle.get_device()
|
|
|
|
paddle.set_device(self.device)
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(
|
|
|
|
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
|
|
|
|
)
|
|
|
|
logger.error("Initialize TTS server engine Failed on device: %s." %
|
|
|
|
(self.device))
|
|
|
|
return False
|
|
|
|
|
|
|
|
try:
|
|
|
|
self.executor._init_from_path(
|
|
|
|
am=self.config.am,
|
|
|
|
am_config=self.config.am_config,
|
|
|
|
am_ckpt=self.config.am_ckpt,
|
|
|
|
am_stat=self.config.am_stat,
|
|
|
|
phones_dict=self.config.phones_dict,
|
|
|
|
tones_dict=self.config.tones_dict,
|
|
|
|
speaker_dict=self.config.speaker_dict,
|
|
|
|
voc=self.config.voc,
|
|
|
|
voc_config=self.config.voc_config,
|
|
|
|
voc_ckpt=self.config.voc_ckpt,
|
|
|
|
voc_stat=self.config.voc_stat,
|
|
|
|
lang=self.config.lang)
|
|
|
|
except Exception as e:
|
|
|
|
logger.error("Failed to get model related files.")
|
|
|
|
logger.error("Initialize TTS server engine Failed on device: %s." %
|
|
|
|
(self.device))
|
|
|
|
return False
|
|
|
|
|
|
|
|
self.am_block = self.config.am_block
|
|
|
|
self.am_pad = self.config.am_pad
|
|
|
|
self.voc_block = self.config.voc_block
|
|
|
|
self.voc_pad = self.config.voc_pad
|
|
|
|
|
|
|
|
logger.info("Initialize TTS server engine successfully on device: %s." %
|
|
|
|
(self.device))
|
|
|
|
return True
|
|
|
|
|
|
|
|
def preprocess(self, text_bese64: str=None, text_bytes: bytes=None):
|
|
|
|
# Convert byte to text
|
|
|
|
if text_bese64:
|
|
|
|
text_bytes = base64.b64decode(text_bese64) # base64 to bytes
|
|
|
|
text = text_bytes.decode('utf-8') # bytes to text
|
|
|
|
|
|
|
|
return text
|
|
|
|
|
|
|
|
def run(self,
|
|
|
|
sentence: str,
|
|
|
|
spk_id: int=0,
|
|
|
|
speed: float=1.0,
|
|
|
|
volume: float=1.0,
|
|
|
|
sample_rate: int=0,
|
|
|
|
save_path: str=None):
|
|
|
|
""" run include inference and postprocess.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sentence (str): text to be synthesized
|
|
|
|
spk_id (int, optional): speaker id for multi-speaker speech synthesis. Defaults to 0.
|
|
|
|
speed (float, optional): speed. Defaults to 1.0.
|
|
|
|
volume (float, optional): volume. Defaults to 1.0.
|
|
|
|
sample_rate (int, optional): target sample rate for synthesized audio,
|
|
|
|
0 means the same as the model sampling rate. Defaults to 0.
|
|
|
|
save_path (str, optional): The save path of the synthesized audio.
|
|
|
|
None means do not save audio. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
wav_base64: The base64 format of the synthesized audio.
|
|
|
|
"""
|
|
|
|
|
|
|
|
lang = self.config.lang
|
|
|
|
wav_list = []
|
|
|
|
|
|
|
|
for wav in self.executor.infer(
|
|
|
|
text=sentence,
|
|
|
|
lang=lang,
|
|
|
|
am=self.config.am,
|
|
|
|
spk_id=spk_id,
|
|
|
|
am_block=self.am_block,
|
|
|
|
am_pad=self.am_pad,
|
|
|
|
voc_block=self.voc_block,
|
|
|
|
voc_pad=self.voc_pad):
|
|
|
|
# wav type: <class 'numpy.ndarray'> float32, convert to pcm (base64)
|
|
|
|
wav = float2pcm(wav) # float32 to int16
|
|
|
|
wav_bytes = wav.tobytes() # to bytes
|
|
|
|
wav_base64 = base64.b64encode(wav_bytes).decode('utf8') # to base64
|
|
|
|
wav_list.append(wav)
|
|
|
|
|
|
|
|
yield wav_base64
|
|
|
|
|
|
|
|
wav_all = np.concatenate(wav_list, axis=0)
|
|
|
|
logger.info("The durations of audio is: {} s".format(
|
|
|
|
len(wav_all) / self.executor.am_config.fs))
|