You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/server/engine/tts/online/tts_engine.py

221 lines
7.9 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import time
import numpy as np
import paddle
from paddlespeech.cli.log import logger
from paddlespeech.cli.tts.infer import TTSExecutor
from paddlespeech.server.engine.base_engine import BaseEngine
from paddlespeech.server.utils.audio_process import float2pcm
from paddlespeech.server.utils.util import get_chunks
__all__ = ['TTSEngine']
class TTSServerExecutor(TTSExecutor):
def __init__(self):
super().__init__()
pass
@paddle.no_grad()
def infer(
self,
text: str,
lang: str='zh',
am: str='fastspeech2_csmsc',
spk_id: int=0,
am_block: int=42,
am_pad: int=12,
voc_block: int=14,
voc_pad: int=14, ):
"""
Model inference and result stored in self.output.
"""
am_name = am[:am.rindex('_')]
am_dataset = am[am.rindex('_') + 1:]
get_tone_ids = False
merge_sentences = False
frontend_st = time.time()
if lang == 'zh':
input_ids = self.frontend.get_input_ids(
text,
merge_sentences=merge_sentences,
get_tone_ids=get_tone_ids)
phone_ids = input_ids["phone_ids"]
if get_tone_ids:
tone_ids = input_ids["tone_ids"]
elif lang == 'en':
input_ids = self.frontend.get_input_ids(
text, merge_sentences=merge_sentences)
phone_ids = input_ids["phone_ids"]
else:
print("lang should in {'zh', 'en'}!")
self.frontend_time = time.time() - frontend_st
for i in range(len(phone_ids)):
am_st = time.time()
part_phone_ids = phone_ids[i]
# am
if am_name == 'speedyspeech':
part_tone_ids = tone_ids[i]
mel = self.am_inference(part_phone_ids, part_tone_ids)
# fastspeech2
else:
# multi speaker
if am_dataset in {"aishell3", "vctk"}:
mel = self.am_inference(
part_phone_ids, spk_id=paddle.to_tensor(spk_id))
else:
mel = self.am_inference(part_phone_ids)
am_et = time.time()
# voc streaming
voc_upsample = self.voc_config.n_shift
mel_chunks = get_chunks(mel, voc_block, voc_pad, "voc")
chunk_num = len(mel_chunks)
voc_st = time.time()
for i, mel_chunk in enumerate(mel_chunks):
sub_wav = self.voc_inference(mel_chunk)
front_pad = min(i * voc_block, voc_pad)
if i == 0:
sub_wav = sub_wav[:voc_block * voc_upsample]
elif i == chunk_num - 1:
sub_wav = sub_wav[front_pad * voc_upsample:]
else:
sub_wav = sub_wav[front_pad * voc_upsample:(
front_pad + voc_block) * voc_upsample]
yield sub_wav
class TTSEngine(BaseEngine):
"""TTS server engine
Args:
metaclass: Defaults to Singleton.
"""
def __init__(self, name=None):
"""Initialize TTS server engine
"""
super(TTSEngine, self).__init__()
def init(self, config: dict) -> bool:
self.executor = TTSServerExecutor()
self.config = config
assert "fastspeech2_csmsc" in config.am and (
config.voc == "hifigan_csmsc-zh" or config.voc == "mb_melgan_csmsc"
), 'Please check config, am support: fastspeech2, voc support: hifigan_csmsc-zh or mb_melgan_csmsc.'
try:
if self.config.device:
self.device = self.config.device
else:
self.device = paddle.get_device()
paddle.set_device(self.device)
except Exception as e:
logger.error(
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
)
logger.error("Initialize TTS server engine Failed on device: %s." %
(self.device))
return False
try:
self.executor._init_from_path(
am=self.config.am,
am_config=self.config.am_config,
am_ckpt=self.config.am_ckpt,
am_stat=self.config.am_stat,
phones_dict=self.config.phones_dict,
tones_dict=self.config.tones_dict,
speaker_dict=self.config.speaker_dict,
voc=self.config.voc,
voc_config=self.config.voc_config,
voc_ckpt=self.config.voc_ckpt,
voc_stat=self.config.voc_stat,
lang=self.config.lang)
except Exception as e:
logger.error("Failed to get model related files.")
logger.error("Initialize TTS server engine Failed on device: %s." %
(self.device))
return False
self.am_block = self.config.am_block
self.am_pad = self.config.am_pad
self.voc_block = self.config.voc_block
self.voc_pad = self.config.voc_pad
logger.info("Initialize TTS server engine successfully on device: %s." %
(self.device))
return True
def preprocess(self, text_bese64: str=None, text_bytes: bytes=None):
# Convert byte to text
if text_bese64:
text_bytes = base64.b64decode(text_bese64) # base64 to bytes
text = text_bytes.decode('utf-8') # bytes to text
return text
def run(self,
sentence: str,
spk_id: int=0,
speed: float=1.0,
volume: float=1.0,
sample_rate: int=0,
save_path: str=None):
""" run include inference and postprocess.
Args:
sentence (str): text to be synthesized
spk_id (int, optional): speaker id for multi-speaker speech synthesis. Defaults to 0.
speed (float, optional): speed. Defaults to 1.0.
volume (float, optional): volume. Defaults to 1.0.
sample_rate (int, optional): target sample rate for synthesized audio,
0 means the same as the model sampling rate. Defaults to 0.
save_path (str, optional): The save path of the synthesized audio.
None means do not save audio. Defaults to None.
Returns:
wav_base64: The base64 format of the synthesized audio.
"""
lang = self.config.lang
wav_list = []
for wav in self.executor.infer(
text=sentence,
lang=lang,
am=self.config.am,
spk_id=spk_id,
am_block=self.am_block,
am_pad=self.am_pad,
voc_block=self.voc_block,
voc_pad=self.voc_pad):
# wav type: <class 'numpy.ndarray'> float32, convert to pcm (base64)
wav = float2pcm(wav) # float32 to int16
wav_bytes = wav.tobytes() # to bytes
wav_base64 = base64.b64encode(wav_bytes).decode('utf8') # to base64
wav_list.append(wav)
yield wav_base64
wav_all = np.concatenate(wav_list, axis=0)
logger.info("The durations of audio is: {} s".format(
len(wav_all) / self.executor.am_config.fs))