|
|
|
"""Contains DeepSpeech2 layers."""
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
|
|
|
|
|
|
|
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
|
|
|
|
padding, act):
|
|
|
|
"""Convolution layer with batch normalization.
|
|
|
|
|
|
|
|
:param input: Input layer.
|
|
|
|
:type input: LayerOutput
|
|
|
|
:param filter_size: The x dimension of a filter kernel. Or input a tuple for
|
|
|
|
two image dimension.
|
|
|
|
:type filter_size: int|tuple|list
|
|
|
|
:param num_channels_in: Number of input channels.
|
|
|
|
:type num_channels_in: int
|
|
|
|
:type num_channels_out: Number of output channels.
|
|
|
|
:type num_channels_in: out
|
|
|
|
:param padding: The x dimension of the padding. Or input a tuple for two
|
|
|
|
image dimension.
|
|
|
|
:type padding: int|tuple|list
|
|
|
|
:param act: Activation type.
|
|
|
|
:type act: BaseActivation
|
|
|
|
:return: Batch norm layer after convolution layer.
|
|
|
|
:rtype: LayerOutput
|
|
|
|
"""
|
|
|
|
conv_layer = paddle.layer.img_conv(
|
|
|
|
input=input,
|
|
|
|
filter_size=filter_size,
|
|
|
|
num_channels=num_channels_in,
|
|
|
|
num_filters=num_channels_out,
|
|
|
|
stride=stride,
|
|
|
|
padding=padding,
|
|
|
|
act=paddle.activation.Linear(),
|
|
|
|
bias_attr=False)
|
|
|
|
return paddle.layer.batch_norm(input=conv_layer, act=act)
|
|
|
|
|
|
|
|
|
|
|
|
def bidirectional_simple_rnn_bn_layer(name, input, size, act):
|
|
|
|
"""Bidirectonal simple rnn layer with sequence-wise batch normalization.
|
|
|
|
The batch normalization is only performed on input-state weights.
|
|
|
|
|
|
|
|
:param name: Name of the layer.
|
|
|
|
:type name: string
|
|
|
|
:param input: Input layer.
|
|
|
|
:type input: LayerOutput
|
|
|
|
:param size: Number of RNN cells.
|
|
|
|
:type size: int
|
|
|
|
:param act: Activation type.
|
|
|
|
:type act: BaseActivation
|
|
|
|
:return: Bidirectional simple rnn layer.
|
|
|
|
:rtype: LayerOutput
|
|
|
|
"""
|
|
|
|
# input-hidden weights shared across bi-direcitonal rnn.
|
|
|
|
input_proj = paddle.layer.fc(
|
|
|
|
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
|
|
|
|
# batch norm is only performed on input-state projection
|
|
|
|
input_proj_bn = paddle.layer.batch_norm(
|
|
|
|
input=input_proj, act=paddle.activation.Linear())
|
|
|
|
# forward and backward in time
|
|
|
|
forward_simple_rnn = paddle.layer.recurrent(
|
|
|
|
input=input_proj_bn, act=act, reverse=False)
|
|
|
|
backward_simple_rnn = paddle.layer.recurrent(
|
|
|
|
input=input_proj_bn, act=act, reverse=True)
|
|
|
|
return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn])
|
|
|
|
|
|
|
|
|
|
|
|
def conv_group(input, num_stacks):
|
|
|
|
"""Convolution group with stacked convolution layers.
|
|
|
|
|
|
|
|
:param input: Input layer.
|
|
|
|
:type input: LayerOutput
|
|
|
|
:param num_stacks: Number of stacked convolution layers.
|
|
|
|
:type num_stacks: int
|
|
|
|
:return: Output layer of the convolution group.
|
|
|
|
:rtype: LayerOutput
|
|
|
|
"""
|
|
|
|
conv = conv_bn_layer(
|
|
|
|
input=input,
|
|
|
|
filter_size=(11, 41),
|
|
|
|
num_channels_in=1,
|
|
|
|
num_channels_out=32,
|
|
|
|
stride=(3, 2),
|
|
|
|
padding=(5, 20),
|
|
|
|
act=paddle.activation.BRelu())
|
|
|
|
for i in xrange(num_stacks - 1):
|
|
|
|
conv = conv_bn_layer(
|
|
|
|
input=conv,
|
|
|
|
filter_size=(11, 21),
|
|
|
|
num_channels_in=32,
|
|
|
|
num_channels_out=32,
|
|
|
|
stride=(1, 2),
|
|
|
|
padding=(5, 10),
|
|
|
|
act=paddle.activation.BRelu())
|
|
|
|
output_num_channels = 32
|
|
|
|
output_height = 160 // pow(2, num_stacks) + 1
|
|
|
|
return conv, output_num_channels, output_height
|
|
|
|
|
|
|
|
|
|
|
|
def rnn_group(input, size, num_stacks):
|
|
|
|
"""RNN group with stacked bidirectional simple RNN layers.
|
|
|
|
|
|
|
|
:param input: Input layer.
|
|
|
|
:type input: LayerOutput
|
|
|
|
:param size: Number of RNN cells in each layer.
|
|
|
|
:type size: int
|
|
|
|
:param num_stacks: Number of stacked rnn layers.
|
|
|
|
:type num_stacks: int
|
|
|
|
:return: Output layer of the RNN group.
|
|
|
|
:rtype: LayerOutput
|
|
|
|
"""
|
|
|
|
output = input
|
|
|
|
for i in xrange(num_stacks):
|
|
|
|
output = bidirectional_simple_rnn_bn_layer(
|
|
|
|
name=str(i), input=output, size=size, act=paddle.activation.BRelu())
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
def deep_speech2(audio_data,
|
|
|
|
text_data,
|
|
|
|
dict_size,
|
|
|
|
num_conv_layers=2,
|
|
|
|
num_rnn_layers=3,
|
|
|
|
rnn_size=256):
|
|
|
|
"""
|
|
|
|
The whole DeepSpeech2 model structure (a simplified version).
|
|
|
|
|
|
|
|
:param audio_data: Audio spectrogram data layer.
|
|
|
|
:type audio_data: LayerOutput
|
|
|
|
:param text_data: Transcription text data layer.
|
|
|
|
:type text_data: LayerOutput
|
|
|
|
:param dict_size: Dictionary size for tokenized transcription.
|
|
|
|
:type dict_size: int
|
|
|
|
:param num_conv_layers: Number of stacking convolution layers.
|
|
|
|
:type num_conv_layers: int
|
|
|
|
:param num_rnn_layers: Number of stacking RNN layers.
|
|
|
|
:type num_rnn_layers: int
|
|
|
|
:param rnn_size: RNN layer size (number of RNN cells).
|
|
|
|
:type rnn_size: int
|
|
|
|
:return: A tuple of an output unnormalized log probability layer (
|
|
|
|
before softmax) and a ctc cost layer.
|
|
|
|
:rtype: tuple of LayerOutput
|
|
|
|
"""
|
|
|
|
# convolution group
|
|
|
|
conv_group_output, conv_group_num_channels, conv_group_height = conv_group(
|
|
|
|
input=audio_data, num_stacks=num_conv_layers)
|
|
|
|
# convert data form convolution feature map to sequence of vectors
|
|
|
|
conv2seq = paddle.layer.block_expand(
|
|
|
|
input=conv_group_output,
|
|
|
|
num_channels=conv_group_num_channels,
|
|
|
|
stride_x=1,
|
|
|
|
stride_y=1,
|
|
|
|
block_x=1,
|
|
|
|
block_y=conv_group_height)
|
|
|
|
# rnn group
|
|
|
|
rnn_group_output = rnn_group(
|
|
|
|
input=conv2seq, size=rnn_size, num_stacks=num_rnn_layers)
|
|
|
|
fc = paddle.layer.fc(
|
|
|
|
input=rnn_group_output,
|
|
|
|
size=dict_size + 1,
|
|
|
|
act=paddle.activation.Linear(),
|
|
|
|
bias_attr=True)
|
|
|
|
# probability distribution with softmax
|
|
|
|
log_probs = paddle.layer.mixed(
|
|
|
|
input=paddle.layer.identity_projection(input=fc),
|
|
|
|
act=paddle.activation.Softmax())
|
|
|
|
# ctc cost
|
|
|
|
ctc_loss = paddle.layer.warp_ctc(
|
|
|
|
input=fc,
|
|
|
|
label=text_data,
|
|
|
|
size=dict_size + 1,
|
|
|
|
blank=dict_size,
|
|
|
|
norm_by_times=True)
|
|
|
|
return log_probs, ctc_loss
|