|
|
|
|
#!/usr/bin/env bash
|
|
|
|
|
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
|
|
|
|
|
# 参数说明
|
|
|
|
|
function _set_params(){
|
|
|
|
|
|
|
|
|
|
run_mode=${1:-"sp"} # 单卡sp|多卡mp
|
|
|
|
|
config_path=${2:-"conf/conformer.yaml"}
|
|
|
|
|
output=${3:-"exp/conformer"}
|
|
|
|
|
seed=${4:-"0"}
|
|
|
|
|
ngpu=${5:-"1"}
|
|
|
|
|
profiler_options=${6:-"None"}
|
|
|
|
|
batch_size=${7:-"32"}
|
|
|
|
|
fp_item=${8:-"fp32"}
|
|
|
|
|
model_item=${9:-"conformer"}
|
|
|
|
|
benchmark_max_step=0
|
|
|
|
|
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数
|
|
|
|
|
# 添加日志解析需要的参数
|
|
|
|
|
base_batch_size=${batch_size}
|
|
|
|
|
mission_name="语音识别"
|
|
|
|
|
direction_id="1"
|
|
|
|
|
ips_unit="sent./sec"
|
|
|
|
|
skip_steps=10 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填)
|
|
|
|
|
keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填)
|
|
|
|
|
index="1"
|
|
|
|
|
model_name=${model_item}_bs${batch_size}_${fp_item}
|
|
|
|
|
|
|
|
|
|
# 以下不用修改
|
|
|
|
|
device=${CUDA_VISIBLE_DEVICES//,/ }
|
|
|
|
|
arr=(${device})
|
|
|
|
|
num_gpu_devices=${#arr[*]}
|
|
|
|
|
log_file=${run_log_path}/recoder_${model_item}_${run_mode}_bs${batch_size}_${fp_item}_ngpu${ngpu}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
function _train(){
|
|
|
|
|
echo "Train on ${num_gpu_devices} GPUs"
|
|
|
|
|
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
|
|
|
|
|
train_cmd="--config=${config_path} \
|
|
|
|
|
--output=${output} \
|
|
|
|
|
--seed=${seed} \
|
|
|
|
|
--ngpu=${ngpu} \
|
|
|
|
|
--benchmark-batch-size ${batch_size} \
|
|
|
|
|
--benchmark-max-step ${benchmark_max_step} "
|
|
|
|
|
if [ ${profiler_options} != "None" ]; then
|
|
|
|
|
train_cmd=${train_cmd}" --profiler-options=${profiler_options}"
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
case ${run_mode} in
|
|
|
|
|
sp) train_cmd="python -u ${BIN_DIR}/train.py "${train_cmd} ;;
|
|
|
|
|
mp) train_cmd="python -u ${BIN_DIR}/train.py "${train_cmd} ;;
|
|
|
|
|
*) echo "choose run_mode(sp or mp)"; exit 1;
|
|
|
|
|
esac
|
|
|
|
|
echo ${train_cmd}
|
|
|
|
|
# 以下不用修改
|
|
|
|
|
timeout 15m ${train_cmd} > ${log_file} 2>&1
|
|
|
|
|
if [ $? -ne 0 ];then
|
|
|
|
|
echo -e "${model_name}, FAIL"
|
|
|
|
|
export job_fail_flag=1
|
|
|
|
|
else
|
|
|
|
|
echo -e "${model_name}, SUCCESS"
|
|
|
|
|
export job_fail_flag=0
|
|
|
|
|
fi
|
|
|
|
|
trap 'for pid in $(jobs -pr); do kill -KILL $pid; done' INT QUIT TERM
|
|
|
|
|
|
|
|
|
|
if [ $run_mode = "mp" -a -d mylog ]; then
|
|
|
|
|
rm ${log_file}
|
|
|
|
|
cp mylog/workerlog.0 ${log_file}
|
|
|
|
|
fi
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
|
|
|
|
|
_set_params $@
|
|
|
|
|
# _train # 如果只想产出训练log,不解析,可取消注释
|
|
|
|
|
_run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开
|
|
|
|
|
|