即时通讯IM
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
Go to file
withchao 3bd0553c6c
find group member
1 year ago
.docker-compose_cfg modify dic 2 years ago
.github Update issue templates 3 years ago
cmd remove office 1 year ago
config notification change 1 year ago
docs Add files via upload 3 years ago
internal find group member 1 year ago
pkg Merge remote-tracking branch 'origin/errcode' into errcode 1 year ago
script modify dic 2 years ago
.env install sh 2 years ago
.gitignore errcode 2 years ago
.gitmodules fixed submodule path 3 years ago
LICENSE Create LICENSE 4 years ago
README.md Update README.md 2 years ago
deploy.Dockerfile build_all_service 2 years ago
docker-compose-mongos.yaml superGroupMaxSeq 2 years ago
docker-compose-shard-cluster.yaml add docker-compose shard cluster 2 years ago
docker-compose.yaml conversation 2 years ago
go.mod tidy 2 years ago
go.sum tidy 2 years ago
init_docker.sh Optimize the script 2 years ago
install_guide.sh modify dic 2 years ago
install_im_compose.sh Error code standardization 2 years ago
install_im_server.sh Get Internet IP automatically 2 years ago

README.md

Open-IM-Server

avatar

avatar

LICENSE Language

Open-IM-Server: Open source Instant Messaging Server

Instant messaging server. Backend in pure Golang, wire transport protocol is JSON over websocket.

Everything is a message in Open-IM-Server, so you can extend custom messages easily, there is no need to modify the server code.

Using microservice architectures, Open-IM-Server can be deployed using clusters.

By deployment of the Open-IM-Server on the customer's server, developers can integrate instant messaging and real-time network capabilities into their own applications free of charge and quickly, and ensure the security and privacy of business data.

Features

  • Everything in Free
  • Scalable architecture
  • Easy integration
  • Good scalability
  • High performance
  • Lightweight
  • Supports multiple protocols

Community

Quick start

Installing Open-IM-Server

Open-IM relies on five open source high-performance components: ETCD, MySQL, MongoDB, Redis, and Kafka. Privatization deployment Before Open-IM-Server, please make sure that the above five components have been installed. If your server does not have the above components, you must first install Missing components. If you have the above components, it is recommended to use them directly. If not, it is recommended to use Docker-compose, no To install dependencies, one-click deployment, faster and more convenient.

Deploy using Docker

  1. Install Go environment. Make sure Go version is at least 1.17

  2. Clone the Open-IM project to your server

    git clone https://github.com/OpenIMSDK/Open-IM-Server.git --recursive
    
  3. Deploy

    1. Modify env

      #cd Open-IM-server
      USER=root  
      PASSWORD=openIM123    #Password with more than 8 digits, excluding special characters
      ENDPOINT=http://127.0.0.1:10005 #Replace 127.0.0.1 with Internet IP
      DATA_DIR=./ 
      
    2. Deploy && Start

      chmod +x install_im_server.sh;
      ./install_im_server.sh;
      
    3. Check service

      cd script;
      ./docker_check_service.sh./check_all.sh
      

      OpenIMServersonSystempng

Deploy using source code

  1. Go 1.17 or above。
  2. Clone
git clone https://github.com/OpenIMSDK/Open-IM-Server.git --recursive 
cd cmd/Open-IM-SDK-Core
git checkout main
  1. Set executable permissions
cd ../../script/
chmod +x *.sh
  1. build
./batch_build_all_service.sh

all services build success

CONFIGURATION INSTRUCTIONS

Open-IM configuration is divided into basic component configuration and business internal service configuration. Developers need to fill in the address of each component as the address of their server component when using the product, and ensure that the internal service port of the business is not occupied

Basic Component Configuration Instructions

  • ETCD
    • Etcd is used for the discovery and registration of rpc services, etcd Schema is the prefix of the registered name, it is recommended to modify it to your company name, etcd address (ip+port) supports clustered deployment, you can fill in multiple ETCD addresses separated by commas, and also only one etcd address.
  • MySQL
    • mysql is used for full storage of messages and user relationships. Cluster deployment is not supported for the time being. Modify addresses and users, passwords, and database names.
  • Mongo
    • Mongo is used for offline storage of messages. The default storage is 7 days. Cluster deployment is temporarily not supported. Just modify the address and database name.
  • Redis
    • Redis is currently mainly used for message serial number storage and user token information storage. Cluster deployment is temporarily not supported. Just modify the corresponding redis address and password.
  • Kafka
    • Kafka is used as a message transfer storage queue to support cluster deployment, just modify the corresponding address

Internal Service Configuration Instructions

  • credential&&push
    • The Open-IM needs to use the three-party offline push function. Currently, Tencent's three-party push is used. It supports IOS, Android and OSX push. This information is some registration information pushed by Tencent. Developers need to go to Tencent Cloud Mobile Push to register the corresponding information. If you do not fill in the corresponding information, you cannot use the offline message push function
  • api&&rpcport&&longconnsvr&&rpcregistername
    • The api port is the http interface, longconnsvr is the websocket listening port, and rpcport is the internal service startup port. Both support cluster deployment. Make sure that these ports are not used. If you want to open multiple services for a single service, fill in multiple ports separated by commas. rpcregistername is the service name registered by each service to the registry etcd, no need to modify
  • log&&modulename
    • The log configuration includes the storage path of the log file, and the log is sent to elasticsearch for log viewing. Currently, the log is not supported to be sent to elasticsearch. The configuration does not need to be modified for the time being. The modulename is used to split the log according to the name of the service module. The default configuration is fine.
  • multiloginpolicy&&tokenpolicy
    • Open-IM supports multi-terminal login. Currently, there are three multi-terminal login policies. The PC terminal and the mobile terminal are online at the same time by default. When multiple policies are configured to be true, the first policy with true is used by default, and the token policy is the generated token policy. , The developer can customize the expiration time of the token

SCRIPT DESCRIPTION

Open-IM script provides service compilation, start, and stop scripts. There are four Open-IM script start modules, one is the http+rpc service start module, the second is the websocket service start module, then the msg_transfer module, and the last is the push module

  • path_info.cfg&&style_info.cfg&&functions.sh
    • Contains the path information of each module, including the path where the source code is located, the name of the service startup, the shell print font style, and some functions for processing shell strings
  • build_all_service.sh
    • Compile the module, compile all the source code of Open-IM into a binary file and put it into the bin directory
  • start_rpc_api_service.sh&&msg_gateway_start.sh&&msg_transfer_start.sh&&push_start.sh
    • Independent script startup module, followed by api and rpc modules, message gateway module, message transfer module, and push module
  • start_all.sh&&stop_all.sh
    • Total script, start all services and close all services

Authentication Clow Chart

avatar

Architecture

avatar

License

Open-IM-Server is under the Apache 2.0 license. See the LICENSE file for details