You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/4-Classification/4-Applied
Jen Looper f979b19fc1
renaming classification content as 'cuisines', not recipes
4 years ago
..
solution renaming classification content as 'cuisines', not recipes 4 years ago
translations re-numbering lesson groups 4 years ago
README.md renaming classification content as 'cuisines', not recipes 4 years ago
assignment.md re-numbering lesson groups 4 years ago
notebook.ipynb renaming classification content as 'cuisines', not recipes 4 years ago

README.md

Build a Cuisine Recommender Web App

In this lesson, you will build a classification model using some of the techniques you have learned in previous lessons and with the delicious cuisine dataset used throughout this series. In addition, you will build a small web app to use a saved model, leveraging Onnx's web runtime.

One of the most useful practical uses of machine learning is building recommendation systems, and you can take the first step in that direction today!

Recommendation Systems Introduction

🎥 Click the image above for a video: Andrew Ng introduces recommendation system design

Pre-lecture quiz

In this lesson you will learn:

Introduction

Describe what will be covered

Notes

Prerequisite

What steps should have been covered before this lesson?

Preparation

Preparatory steps to start this lesson


[Step through content in blocks]

[Topic 1]

Task:

Work together to progressively enhance your codebase to build the project with shared code:

code blocks

Knowledge Check - use this moment to stretch students' knowledge with open questions

[Topic 2]

[Topic 3]

🚀Challenge

Add a challenge for students to work on collaboratively in class to enhance the project

Optional: add a screenshot of the completed lesson's UI if appropriate

Post-lecture quiz

Review & Self Study

Assignment

Assignment Name