You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/7-TimeSeries/3-SVR/working/notebook.ipynb

699 lines
15 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "fv9OoQsMFk5A"
},
"source": [
"# Time series prediction using Support Vector Regressor"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this notebook, we demonstrate how to:\n",
"\n",
"- prepare 2D time series data for training an SVM regressor model\n",
"- implement SVR using RBF kernel\n",
"- evaluate the model using plots and MAPE"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Importing modules"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.append('../../')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "M687KNlQFp0-"
},
"outputs": [],
"source": [
"import os\n",
"import warnings\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import pandas as pd\n",
"import datetime as dt\n",
"import math\n",
"\n",
"from sklearn.svm import SVR\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from common.utils import load_data, mape"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Cj-kfVdMGjWP"
},
"source": [
"## Preparing data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8fywSjC6GsRz"
},
"source": [
"### Load data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "aBDkEB11Fumg",
"outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740"
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>load</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2012-01-01 00:00:00</th>\n",
" <td>2698.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 01:00:00</th>\n",
" <td>2558.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 02:00:00</th>\n",
" <td>2444.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 03:00:00</th>\n",
" <td>2402.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2012-01-01 04:00:00</th>\n",
" <td>2403.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" load\n",
"2012-01-01 00:00:00 2698.0\n",
"2012-01-01 01:00:00 2558.0\n",
"2012-01-01 02:00:00 2444.0\n",
"2012-01-01 03:00:00 2402.0\n",
"2012-01-01 04:00:00 2403.0"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"energy = load_data('../../data')[['load']]\n",
"energy.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "O0BWP13rGnh4"
},
"source": [
"### Plot the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 486
},
"id": "hGaNPKu_Gidk",
"outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d"
},
"outputs": [],
"source": [
"energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n",
"plt.xlabel('timestamp', fontsize=12)\n",
"plt.ylabel('load', fontsize=12)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IPuNor4eGwYY"
},
"source": [
"### Create training and testing data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ysvsNyONGt0Q"
},
"outputs": [],
"source": [
"train_start_dt = '2014-11-01 00:00:00'\n",
"test_start_dt = '2014-12-30 00:00:00'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 548
},
"id": "SsfdLoPyGy9w",
"outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7"
},
"outputs": [],
"source": [
"energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n",
" .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n",
" .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n",
"plt.xlabel('timestamp', fontsize=12)\n",
"plt.ylabel('load', fontsize=12)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XbFTqBw6G1Ch"
},
"source": [
"### Preparing data for training"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, you need to prepare the data for training by performing filtering and scaling of your data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cYivRdQpHDj3",
"outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1"
},
"outputs": [],
"source": [
"train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n",
"test = energy.copy()[energy.index >= test_start_dt][['load']]\n",
"\n",
"print('Training data shape: ', train.shape)\n",
"print('Test data shape: ', test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Scale the data to be in the range (0, 1)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "3DNntGQnZX8G",
"outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c"
},
"outputs": [],
"source": [
"scaler = MinMaxScaler()\n",
"train['load'] = scaler.fit_transform(train)\n",
"train.head(5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "26Yht-rzZexe",
"outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301"
},
"outputs": [],
"source": [
"test['load'] = scaler.transform(test)\n",
"test.head(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "x0n6jqxOQ41Z"
},
"source": [
"### Creating data with time-steps"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fdmxTZtOQ8xs"
},
"source": [
" For our SVR, we transform the input data to be of the form `[batch, timesteps]`. So, we reshape the existing `train_data` and `test_data` such that there is a new dimension which refers to the timesteps. For our example, we take `timesteps = 5`. So, the inputs to the model are the data for the first 4 timesteps, and the output will be the data for the 5<sup>th</sup> timestep."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Rpju-Sc2HFm0"
},
"outputs": [],
"source": [
"# Converting to numpy arrays\n",
"\n",
"train_data = train.values\n",
"test_data = test.values"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Selecting the timesteps\n",
"\n",
"timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "O-JrsrsVJhUQ",
"outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef"
},
"outputs": [],
"source": [
"# Converting data to 2D tensor\n",
"\n",
"train_data_timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "exJD8AI7KE4g",
"outputId": "ce90260c-f327-427d-80f2-77307b5a6318"
},
"outputs": [],
"source": [
"# Converting test data to 2D tensor\n",
"\n",
"test_data_timesteps=None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2u0R2sIsLuq5"
},
"outputs": [],
"source": [
"x_train, y_train = None\n",
"x_test, y_test = None\n",
"\n",
"print(x_train.shape, y_train.shape)\n",
"print(x_test.shape, y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8wIPOtAGLZlh"
},
"source": [
"## Creating SVR model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "EhA403BEPEiD"
},
"outputs": [],
"source": [
"# Create model using RBF kernel\n",
"\n",
"model = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GS0UA3csMbqp",
"outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d"
},
"outputs": [],
"source": [
"# Fit model on training data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Rz_x8S3UrlcF"
},
"source": [
"### Make model prediction"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XR0gnt3MnuYS",
"outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364"
},
"outputs": [],
"source": [
"# Making predictions\n",
"\n",
"y_train_pred = None\n",
"y_test_pred = None"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_2epncg-SGzr"
},
"source": [
"## Analyzing model performance"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Scaling the predictions\n",
"\n",
"y_train_pred = scaler.inverse_transform(y_train_pred)\n",
"y_test_pred = scaler.inverse_transform(y_test_pred)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xmm_YLXhq7gV",
"outputId": "18392f64-4029-49ac-c71a-a4e2411152a1"
},
"outputs": [],
"source": [
"# Scaling the original values\n",
"\n",
"y_train = scaler.inverse_transform(y_train)\n",
"y_test = scaler.inverse_transform(y_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "u3LBj93coHEi",
"outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4"
},
"outputs": [],
"source": [
"# Extract the timesteps for x-axis\n",
"\n",
"train_timestamps = None\n",
"test_timestamps = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(25,6))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.title(\"Training data prediction\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LnhzcnYtXHCm",
"outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b"
},
"outputs": [],
"source": [
"print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 225
},
"id": "53Q02FoqQH4V",
"outputId": "53e2d59b-5075-4765-ad9e-aed56c966583"
},
"outputs": [],
"source": [
"plt.figure(figsize=(10,3))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "clOAUH-SXCJG",
"outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5"
},
"outputs": [],
"source": [
"print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DHlKvVCId5ue"
},
"source": [
"## Full dataset prediction"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cOFJ45vreO0N",
"outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16"
},
"outputs": [],
"source": [
"# Extracting load values as numpy array\n",
"data = None\n",
"\n",
"# Scaling\n",
"data = None\n",
"\n",
"# Transforming to 2D tensor as per model input requirement\n",
"data_timesteps=None\n",
"\n",
"# Selecting inputs and outputs from data\n",
"X, Y = None, None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ESSAdQgwexIi"
},
"outputs": [],
"source": [
"# Make model predictions\n",
"\n",
"# Inverse scale and reshape\n",
"Y_pred = None\n",
"Y = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 328
},
"id": "M_qhihN0RVVX",
"outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80"
},
"outputs": [],
"source": [
"plt.figure(figsize=(30,8))\n",
"# plot original output\n",
"# plot predicted output\n",
"plt.legend(['Actual','Predicted'])\n",
"plt.xlabel('Timestamp')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AcN7pMYXVGTK",
"outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770"
},
"outputs": [],
"source": [
"print('MAPE: ', mape(Y_pred, Y)*100, '%')"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "Recurrent_Neural_Networks.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 1
}