You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/kn/2-Regression
localizeflow[bot] 2bc4085ea6
chore(i18n): sync translations with latest source changes (chunk 2/6, 473 changes)
3 weeks ago
..
1-Tools chore(i18n): sync translations with latest source changes (chunk 2/6, 473 changes) 3 weeks ago
2-Data chore(i18n): sync translations with latest source changes (chunk 2/6, 473 changes) 3 weeks ago
3-Linear chore(i18n): sync translations with latest source changes (chunk 2/6, 473 changes) 3 weeks ago
4-Logistic chore(i18n): sync translations with latest source changes (chunk 2/6, 473 changes) 3 weeks ago
README.md chore(i18n): sync translations with latest source changes (chunk 2/6, 473 changes) 3 weeks ago

README.md

ಯಂತ್ರ ಅಧ್ಯಯನಕ್ಕಾಗಿ ರಿಗ್ರೆಶನ್ ಮಾದರಿಗಳು

ಪ್ರಾದೇಶಿಕ ವಿಷಯ: ಉತ್ತರ ಅಮೆರಿಕದ ಕಂಬಳಿಯ ಬೆಲೆಗೆ ರಿಗ್ರೆಶನ್ ಮಾದರಿಗಳು 🎃

ಉತ್ತರ ಅಮೆರಿಕದಲ್ಲಿ, ಹ್ಯಾಲೋವೀನ್‌ಗಾಗಿ ಕಂಬಳಿಗಳನ್ನು ಭಯಾನಕ ಮುಖಗಳಾಗಿ ಕತ್ತರಿಸಲಾಗುತ್ತದೆ. ಈ ಆಕರ್ಷಕ ತರಕಾರಿಗಳ ಬಗ್ಗೆ ಇನ್ನಷ್ಟು ತಿಳಿದುಕೊಳ್ಳೋಣ!

jack-o-lanterns

ಫೋಟೋ ಬೆತ್ ಟ್ಯೂಟ್ಸ್‌ಮನ್ ಅವರಿಂದ ಅನ್ಸ್ಪ್ಲ್ಯಾಶ್ ನಲ್ಲಿ

ನೀವು ಏನು ಕಲಿಯುತ್ತೀರಿ

Introduction to Regression

🎥 ಈ ಪಾಠಕ್ಕೆ ತ್ವರಿತ ಪರಿಚಯ ವೀಡಿಯೊಗಾಗಿ ಮೇಲಿನ ಚಿತ್ರವನ್ನು ಕ್ಲಿಕ್ ಮಾಡಿ

ಈ ವಿಭಾಗದ ಪಾಠಗಳು ಯಂತ್ರ ಅಧ್ಯಯನದ ಸಂದರ್ಭದಲ್ಲಿ ರಿಗ್ರೆಶನ್ ಪ್ರಕಾರಗಳನ್ನು ಒಳಗೊಂಡಿವೆ. ರಿಗ್ರೆಶನ್ ಮಾದರಿಗಳು ಚರಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ನಿರ್ಧರಿಸಲು ಸಹಾಯ ಮಾಡಬಹುದು. ಈ ರೀತಿಯ ಮಾದರಿ ಉದ್ದ, ತಾಪಮಾನ ಅಥವಾ ವಯಸ್ಸಿನಂತಹ ಮೌಲ್ಯಗಳನ್ನು ಭವಿಷ್ಯವಾಣಿ ಮಾಡಬಹುದು, ಹೀಗಾಗಿ ಡೇಟಾ ಪಾಯಿಂಟ್‌ಗಳನ್ನು ವಿಶ್ಲೇಷಿಸುವಾಗ ಚರಗಳ ನಡುವಿನ ಸಂಬಂಧಗಳನ್ನು ಅನಾವರಣ ಮಾಡುತ್ತದೆ.

ಈ ಪಾಠ ಸರಣಿಯಲ್ಲಿ, ನೀವು ಲೀನಿಯರ್ ಮತ್ತು ಲಾಜಿಸ್ಟಿಕ್ ರಿಗ್ರೆಶನ್ ನಡುವಿನ ವ್ಯತ್ಯಾಸಗಳನ್ನು ಮತ್ತು ಯಾವಾಗ ಒಂದನ್ನು ಇನ್ನೊಂದಕ್ಕಿಂತ ಪ್ರಾಧಾನ್ಯ ನೀಡಬೇಕು ಎಂಬುದನ್ನು ತಿಳಿದುಕೊಳ್ಳುತ್ತೀರಿ.

ML for beginners - Introduction to Regression models for Machine Learning

🎥 ರಿಗ್ರೆಶನ್ ಮಾದರಿಗಳನ್ನು ಪರಿಚಯಿಸುವ ಸಂಕ್ಷಿಪ್ತ ವೀಡಿಯೊಗಾಗಿ ಮೇಲಿನ ಚಿತ್ರವನ್ನು ಕ್ಲಿಕ್ ಮಾಡಿ.

ಈ ಪಾಠಗಳ ಗುಂಪಿನಲ್ಲಿ, ನೀವು ಯಂತ್ರ ಅಧ್ಯಯನ ಕಾರ್ಯಗಳನ್ನು ಪ್ರಾರಂಭಿಸಲು ಸಿದ್ಧರಾಗುತ್ತೀರಿ, ಇದರಲ್ಲಿ ಡೇಟಾ ವಿಜ್ಞಾನಿಗಳ ಸಾಮಾನ್ಯ ಪರಿಸರವಾದ ನೋಟ್ಬುಕ್‌ಗಳನ್ನು ನಿರ್ವಹಿಸಲು Visual Studio Code ಅನ್ನು ಸಂರಚಿಸುವುದು ಸೇರಿದೆ. ನೀವು ಯಂತ್ರ ಅಧ್ಯಯನಕ್ಕಾಗಿ ಲೈಬ್ರರಿ ಆಗಿರುವ Scikit-learn ಅನ್ನು ಕಂಡುಹಿಡಿಯುತ್ತೀರಿ ಮತ್ತು ಈ ಅಧ್ಯಾಯದಲ್ಲಿ ರಿಗ್ರೆಶನ್ ಮಾದರಿಗಳ ಮೇಲೆ ಕೇಂದ್ರೀಕರಿಸಿ ನಿಮ್ಮ ಮೊದಲ ಮಾದರಿಗಳನ್ನು ನಿರ್ಮಿಸುತ್ತೀರಿ.

ರಿಗ್ರೆಶನ್ ಮಾದರಿಗಳೊಂದಿಗೆ ಕೆಲಸ ಮಾಡುವ ಬಗ್ಗೆ ಕಲಿಯಲು ಸಹಾಯ ಮಾಡುವ ಉಪಯುಕ್ತ ಕಡಿಮೆ-ಕೋಡ್ ಸಾಧನಗಳಿವೆ. ಈ ಕಾರ್ಯಕ್ಕಾಗಿ Azure ML ಅನ್ನು ಪ್ರಯತ್ನಿಸಿ

ಪಾಠಗಳು

  1. ಉಪಕರಣಗಳು
  2. ಡೇಟಾ ನಿರ್ವಹಣೆ
  3. ಲೀನಿಯರ್ ಮತ್ತು ಬಹುಪದ ರಿಗ್ರೆಶನ್
  4. ಲಾಜಿಸ್ಟಿಕ್ ರಿಗ್ರೆಶನ್

ಕ್ರೆಡಿಟ್‌ಗಳು

"ML with regression" ಅನ್ನು ♥️ ಜೆನ್ ಲೂಪರ್ ರಚಿಸಿದ್ದಾರೆ

♥️ ಪ್ರಶ್ನೋತ್ತರದ ಸಹಯೋಗಿಗಳು: ಮುಹಮ್ಮದ್ ಸಕೀಬ್ ಖಾನ್ ಇನಾನ್ ಮತ್ತು ಓರ್ನೆಲ್ಲಾ ಅಲ್ಟುನ್ಯಾನ್

ಕಂಬಳಿ ಡೇಟಾಸೆಟ್ ಅನ್ನು ಈ ಪ್ರಾಜೆಕ್ಟ್ ಕಾಗಲ್‌ನಲ್ಲಿ ಸೂಚಿಸಲಾಗಿದೆ ಮತ್ತು ಅದರ ಡೇಟಾ ಯುನೈಟೆಡ್ ಸ್ಟೇಟ್ಸ್ ಡಿಪಾರ್ಟ್‌ಮೆಂಟ್ ಆಫ್ ಅಗ್ರಿಕಲ್ಚರ್ ವಿತರಿಸುವ Specialty Crops Terminal Markets Standard Reports ನಿಂದ ಪಡೆದಿದೆ. ನಾವು ಬಣ್ಣವನ್ನು ಪ್ರಭೇದದ ಆಧಾರದ ಮೇಲೆ ಕೆಲವು ಅಂಕಿಗಳನ್ನು ಸೇರಿಸಿ ವಿತರಣೆ ಸಾಮಾನ್ಯಗೊಳಿಸಿದ್ದೇವೆ. ಈ ಡೇಟಾ ಸಾರ್ವಜನಿಕ ಕ್ಷೇತ್ರದಲ್ಲಿದೆ.


ಅಸ್ವೀಕರಣ:
ಈ ದಸ್ತಾವೇಜು Co-op Translator ಎಂಬ AI ಅನುವಾದ ಸೇವೆಯನ್ನು ಬಳಸಿ ಅನುವಾದಿಸಲಾಗಿದೆ. ನಾವು ಶುದ್ಧತೆಯತ್ತ ಪ್ರಯತ್ನಿಸುತ್ತಿದ್ದರೂ, ಸ್ವಯಂಚಾಲಿತ ಅನುವಾದಗಳಲ್ಲಿ ತಪ್ಪುಗಳು ಅಥವಾ ಅಸತ್ಯತೆಗಳು ಇರಬಹುದು ಎಂಬುದನ್ನು ದಯವಿಟ್ಟು ಗಮನಿಸಿ. ಮೂಲ ಭಾಷೆಯಲ್ಲಿರುವ ಮೂಲ ದಸ್ತಾವೇಜನ್ನು ಅಧಿಕೃತ ಮೂಲವೆಂದು ಪರಿಗಣಿಸಬೇಕು. ಮಹತ್ವದ ಮಾಹಿತಿಗಾಗಿ, ವೃತ್ತಿಪರ ಮಾನವ ಅನುವಾದವನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗುತ್ತದೆ. ಈ ಅನುವಾದ ಬಳಕೆಯಿಂದ ಉಂಟಾಗುವ ಯಾವುದೇ ತಪ್ಪು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವಿಕೆ ಅಥವಾ ತಪ್ಪು ವಿವರಣೆಗಳಿಗೆ ನಾವು ಹೊಣೆಗಾರರಾಗುವುದಿಲ್ಲ.