You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/Regression/4-Logistic/solution/notebook.ipynb

350 lines
103 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7",
"display_name": "Python 3.7.0 64-bit ('3.7')"
},
"metadata": {
"interpreter": {
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
}
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"source": [
"## Logistic Regression - Lesson 4\n",
"\n",
"Load up required libraries and dataset. Convert the data to a dataframe containing a subset of the data"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" City Name Type Package Variety Sub Variety Grade Date \\\n",
"0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n",
"1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n",
"2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
"3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n",
"4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n",
"\n",
" Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n",
"0 270.0 280.0 270.0 ... NaN NaN NaN \n",
"1 270.0 280.0 270.0 ... NaN NaN NaN \n",
"2 160.0 160.0 160.0 ... NaN NaN NaN \n",
"3 160.0 160.0 160.0 ... NaN NaN NaN \n",
"4 90.0 100.0 90.0 ... NaN NaN NaN \n",
"\n",
" Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n",
"0 NaN NaN NaN E NaN NaN NaN \n",
"1 NaN NaN NaN E NaN NaN NaN \n",
"2 NaN NaN NaN N NaN NaN NaN \n",
"3 NaN NaN NaN N NaN NaN NaN \n",
"4 NaN NaN NaN N NaN NaN NaN \n",
"\n",
"[5 rows x 26 columns]"
],
"text/html": "<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>City Name</th>\n <th>Type</th>\n <th>Package</th>\n <th>Variety</th>\n <th>Sub Variety</th>\n <th>Grade</th>\n <th>Date</th>\n <th>Low Price</th>\n <th>High Price</th>\n <th>Mostly Low</th>\n <th>...</th>\n <th>Unit of Sale</th>\n <th>Quality</th>\n <th>Condition</th>\n <th>Appearance</th>\n <th>Storage</th>\n <th>Crop</th>\n <th>Repack</th>\n <th>Trans Mode</th>\n <th>Unnamed: 24</th>\n <th>Unnamed: 25</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>BALTIMORE</td>\n <td>NaN</td>\n <td>24 inch bins</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>4/29/17</td>\n <td>270.0</td>\n <td>280.0</td>\n <td>270.0</td>\n <td>...</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>E</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n </tr>\n <tr>\n <th>1</th>\n <td>BALTIMORE</td>\n <td>NaN</td>\n <td>24 inch bins</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>5/6/17</td>\n <td>270.0</td>\n <td>280.0</td>\n <td>270.0</td>\n <td>...</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>E</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n </tr>\n <tr>\n <th>2</th>\n <td>BALTIMORE</td>\n <td>NaN</td>\n <td>24 inch bins</td>\n <td>HOWDEN TYPE</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>9/24/16</td>\n <td>160.0</td>\n <td>160.0</td>\n <td>160.0</td>\n <td>...</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>N</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n </tr>\n <tr>\n <th>3</th>\n <td>BALTIMORE</td>\n <td>NaN</td>\n <td>24 inch bins</td>\n <td>HOWDEN TYPE</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>9/24/16</td>\n <td>160.0</td>\n <td>160.0</td>\n <td>160.0</td>\n <td>...</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>N</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n </tr>\n <tr>\n <th>4</th>\n <td>BALTIMORE</td>\n <td>NaN</td>\n <td>24 inch bins</td>\n <td>HOWDEN TYPE</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>11/5/16</td>\n <td>90.0</td>\n <td>100.0</td>\n <td>90.0</td>\n <td>...</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>N</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n </tr>\n </tbody>\n</table>\n<p>5 rows × 26 columns</p>\n</div>"
},
"metadata": {},
"execution_count": 8
}
],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n",
"\n",
"pumpkins.head()\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import LabelEncoder\n",
"\n",
"new_columns = ['Color','Origin','Item Size','Variety','City Name','Package']\n",
"\n",
"new_pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n",
"\n",
"new_pumpkins.dropna(inplace=True)\n",
"\n",
"new_pumpkins = new_pumpkins.apply(LabelEncoder().fit_transform)"
]
},
{
"source": [
"Check the data shape, size, and quality"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<bound method DataFrame.info of City Name Package Variety Origin Item Size Color\n",
"2 1 3 4 3 3 0\n",
"3 1 3 4 17 3 0\n",
"4 1 3 4 5 2 0\n",
"5 1 3 4 5 2 0\n",
"6 1 4 4 5 3 0\n",
"... ... ... ... ... ... ...\n",
"1694 12 3 5 4 6 1\n",
"1695 12 3 5 4 6 1\n",
"1696 12 3 5 4 6 1\n",
"1697 12 3 5 4 6 1\n",
"1698 12 3 5 4 6 1\n",
"\n",
"[991 rows x 6 columns]>"
]
},
"metadata": {},
"execution_count": 10
}
],
"source": [
"new_pumpkins.info"
]
},
{
"source": [
"Working with Item Size to Color, create a scatterplot using Seaborn"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "ModuleNotFoundError",
"evalue": "No module named 'seaborn'",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-11-9d9b5803ae31>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mseaborn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPairGrid\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_pumpkins\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatterplot\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'seaborn'"
]
}
],
"source": [
"import seaborn as sns\n",
"\n",
"g = sns.PairGrid(new_pumpkins)\n",
"g.map(sns.scatterplot)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'sns' is not defined",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-63553501ab59>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mswarmplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Color\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Item Size\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnew_pumpkins\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'sns' is not defined"
]
}
],
"source": [
"sns.swarmplot(x=\"Color\", y=\"Item Size\", data=new_pumpkins)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<seaborn.axisgrid.FacetGrid at 0x7f95c8484130>"
]
},
"metadata": {},
"execution_count": 10
},
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 360x360 with 1 Axes>",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"352.15625pt\" version=\"1.1\" viewBox=\"0 0 352.470312 352.15625\" width=\"352.470312pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <defs>\n <style type=\"text/css\">\n*{stroke-linecap:butt;stroke-linejoin:round;}\n </style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 352.15625 \nL 352.470312 352.15625 \nL 352.470312 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 42.620313 314.6 \nL 345.270312 314.6 \nL 345.270312 7.2 \nL 42.620313 7.2 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g id=\"PolyCollection_1\">\n <defs>\n <path d=\"M 118.559246 -51.528977 \nL 118.006379 -51.528977 \nL 117.893814 -54.24032 \nL 117.751719 -56.951662 \nL 117.578902 -59.663004 \nL 117.376321 -62.374347 \nL 117.147126 -65.085689 \nL 116.896104 -67.797032 \nL 116.628406 -70.508374 \nL 116.347624 -73.219716 \nL 116.053494 -75.931059 \nL 115.739719 -78.642401 \nL 115.392567 -81.353744 \nL 114.990898 -84.065086 \nL 114.508116 -86.776428 \nL 113.916167 -89.487771 \nL 113.191174 -92.199113 \nL 112.319736 -94.910455 \nL 111.304448 -97.621798 \nL 110.167004 -100.33314 \nL 108.947462 -103.044483 \nL 107.698895 -105.755825 \nL 106.477692 -108.467167 \nL 105.331008 -111.17851 \nL 104.283921 -113.889852 \nL 103.329502 -116.601195 \nL 102.42491 -119.312537 \nL 101.495673 -122.023879 \nL 100.448632 -124.735222 \nL 99.191944 -127.446564 \nL 97.658479 -130.157907 \nL 95.827549 -132.869249 \nL 93.739574 -135.580591 \nL 91.499242 -138.291934 \nL 89.264968 -141.003276 \nL 87.225469 -143.714618 \nL 85.567453 -146.425961 \nL 84.440878 -149.137303 \nL 83.92935 -151.848646 \nL 84.0325 -154.559988 \nL 84.664779 -157.27133 \nL 85.67147 -159.982673 \nL 86.858771 -162.694015 \nL 88.03151 -165.405358 \nL 89.030275 -168.1167 \nL 89.759898 -170.828042 \nL 90.203287 -173.539385 \nL 90.418026 -176.250727 \nL 90.517143 -178.96207 \nL 90.638947 -181.673412 \nL 90.913149 -184.384754 \nL 91.430989 -187.096097 \nL 92.225838 -189.807439 \nL 93.268 -192.518781 \nL 94.473998 -195.230124 \nL 95.727232 -197.941466 \nL 96.904465 -200.652809 \nL 97.901524 -203.364151 \nL 98.652167 -206.075493 \nL 99.136048 -208.786836 \nL 99.374519 -211.498178 \nL 99.416054 -214.209521 \nL 99.315548 -216.920863 \nL 99.113208 -219.632205 \nL 98.81877 -222.343548 \nL 98.405465 -225.05489 \nL 97.815772 -227.766233 \nL 96.978011 -230.477575 \nL 95.830061 -233.188917 \nL 94.344406 -235.90026 \nL 92.548003 -238.611602 \nL 90.53127 -241.322944 \nL 88.442765 -244.034287 \nL 86.469391 -246.745629 \nL 84.805522 -249.456972 \nL 83.617365 -252.168314 \nL 83.010473 -254.879656 \nL 83.007993 -257.590999 \nL 83.545117 -260.302341 \nL 84.481563 -263.013684 \nL 85.629819 -265.725026 \nL 86.793201 -268.436368 \nL 87.805466 -271.147711 \nL 88.563446 -273.859053 \nL 89.045782 -276.570396 \nL 89.314135 -279.281738 \nL 89.497208 -281.99308 \nL 89.761683 -284.704423 \nL 90.276852 -287.415765 \nL 91.180636 -290.127107 \nL 92.55388 -292.83845 \nL 94.407447 -295.549792 \nL 96.683453 -298.261135 \nL 99.268866 -300.972477 \nL 102.01728 -303.683819 \nL 104.773559 -306.395162 \nL 107.396276 -309.106504 \nL 109.774197 -311.817847 \nL 111.834972 -314.529189 \nL 113.546157 -317.240531 \nL 114.910134 -319.951874 \nL 121.655491 -319.951874 \nL 121.655491 -319.951874 \nL 123.019468 -317.240531 \nL 124.730653 -314.529189 \nL 126.791428 -311.817847 \nL 129.169349 -309.106504 \nL 131.792066 -306.395162 \nL 134.548345 -303.683819 \nL 137.296759 -300.972477 \nL 139.882172 -298.261135 \nL 142.158178 -295.549792 \nL 144.011745 -292.83845 \nL 145.384989 -290.127107 \nL 146.288773 -287.415765 \nL 146.803942 -284.704423 \nL 147.068417 -281.99308 \nL 147.25149 -279.281738 \nL 147.519843 -276.570396 \nL 148.002179 -273.859053 \nL 148.760159 -271.147711 \nL 149.772424 -268.436368 \nL 150.935806 -265.725026 \nL 152.084062 -263.013684 \nL 153.020508 -260.302341 \nL 153.557632 -257.590999 \nL 153.555152 -254.879656 \nL 152.94826 -252.168314 \nL 151.760103 -249.456972 \nL 150.096234 -246.745629 \nL 148.12286 -244.034287 \nL 146.034355 -241.322944 \nL 144.017622 -238.611602 \nL 142.221219 -235.90026 \nL 140.735564 -233.188917 \nL 139.587614 -230.477575 \nL 138.749853 -227.766233 \nL 138.16016 -225.05489 \nL 137.746855 -222.343548 \nL 137.452417 -219.632205 \nL 137.250077 -216.920863 \nL 137.149571 -214.209521 \nL 137.191106 -211.498178 \nL 137.429577 -208.786836 \nL 137.913458 -206.075493 \nL 138.664101 -203.364151 \nL 139.66116 -200.652809 \nL 140.838393 -197.941466 \nL 142.091627 -195.230124 \nL 143.297625 -192.518781 \nL 144.339787 -189.807439 \nL 145.134636 -187.096097 \nL 145.652476 -184.384754 \nL 145.926678 -181.673412 \nL 146.048482 -178.96207 \nL 146.147599 -176.250727 \nL 146.362338 -173.539385 \nL 146.805727 -170.828042 \nL 147.53535 -168.1167 \nL 148.534115 -165.405358 \nL 149.706854 -162.694015 \nL 150.894155 -159.982673 \nL 151.900846 -157.27133 \nL 152.533125 -154.559988 \nL 152.636275 -151.848646 \nL 152.124747 -149.137303 \nL 150.998172 -146.425961 \nL 149.340156 -143.714618 \nL 147.300657 -141.003276 \nL 145.066383 -138.291934 \nL 142.826051 -135.580591 \nL 140.738076 -132.869249 \nL 138.907146 -130.157907 \nL 137.373681 -127.446564 \nL 136.116993 -124.735222 \nL 135.069952 -122.023879 \nL 134.140715 -119.312537 \nL 133.236123 -116.601195 \nL 132.281704 -113.889852 \nL 131.234617 -111.17851 \nL 130.087933 -108.467167 \nL 128.86673 -105.755825 \nL 127.618163 -103.044483 \nL 126.398621 -100.33314 \nL 125.261177 -97.621798 \nL 124.245889 -94.910455 \nL 123.374451 -92.199113 \nL 122.649458 -89.487771 \nL 122.057509 -86.776428 \nL 121.574727 -84.065086 \nL 121.173058 -81.353744 \nL 120.825906 -78.642401 \nL 120.512131 -75.931059 \nL 120.218001 -73.219716 \nL 119.937219 -70.508374 \nL 119.669521 -67.797032 \nL 119.418499 -65.085689 \nL 119.189304 -62.374347 \nL 118.986723 -59.663004 \nL 118.813906 -56.951662 \nL 118.671811 -54.24032 \nL 118.559246 -51.528977 \nz\n\" id=\"m294a3d9887\" style=\"stroke:#3f3f3f;stroke-width:1.5;\"/>\n </defs>\n <g clip-path=\"url(#pcc73395aa6)\">\n <use style=\"fill:#3274a1;stroke:#3f3f3f;stroke-width:1.5;\" x=\"0\" xlink:href=\"#m294a3d9887\" y=\"352.15625\"/>\n </g>\n </g>\n <g id=\"PolyCollection_2\">\n <defs>\n <path d=\"M 271.780158 -75.045965 \nL 267.435467 -75.045965 \nL 266.841184 -77.631192 \nL 266.137591 -80.21642 \nL 265.320656 -82.801648 \nL 264.390903 -85.386876 \nL 263.354339 -87.972104 \nL 262.223122 -90.557332 \nL 261.015817 -93.14256 \nL 259.757171 -95.727788 \nL 258.477323 -98.313015 \nL 257.210468 -100.898243 \nL 255.993028 -103.483471 \nL 254.861462 -106.068699 \nL 253.849912 -108.653927 \nL 252.987908 -111.239155 \nL 252.298357 -113.824383 \nL 251.796054 -116.40961 \nL 251.486854 -118.994838 \nL 251.367611 -121.580066 \nL 251.426872 -124.165294 \nL 251.64623 -126.750522 \nL 252.002166 -129.33575 \nL 252.468162 -131.920978 \nL 253.016821 -134.506205 \nL 253.621781 -137.091433 \nL 254.259228 -139.676661 \nL 254.908904 -142.261889 \nL 255.554558 -144.847117 \nL 256.18391 -147.432345 \nL 256.788203 -150.017573 \nL 257.361509 -152.6028 \nL 257.899925 -155.188028 \nL 258.400803 -157.773256 \nL 258.862115 -160.358484 \nL 259.281993 -162.943712 \nL 259.658462 -165.52894 \nL 259.989331 -168.114168 \nL 260.272168 -170.699395 \nL 260.50431 -173.284623 \nL 260.68283 -175.869851 \nL 260.804439 -178.455079 \nL 260.865291 -181.040307 \nL 260.860696 -183.625535 \nL 260.784781 -186.210763 \nL 260.630111 -188.79599 \nL 260.387314 -191.381218 \nL 260.044744 -193.966446 \nL 259.588211 -196.551674 \nL 259.000817 -199.136902 \nL 258.262941 -201.72213 \nL 257.352445 -204.307358 \nL 256.24517 -206.892585 \nL 254.915827 -209.477813 \nL 253.339366 -212.063041 \nL 251.492883 -214.648269 \nL 249.358067 -217.233497 \nL 246.924124 -219.818725 \nL 244.190979 -222.403953 \nL 241.17247 -224.98918 \nL 237.899173 -227.574408 \nL 234.420393 -230.159636 \nL 230.804905 -232.744864 \nL 227.140085 -235.330092 \nL 223.529192 -237.91532 \nL 220.086793 -240.500548 \nL 216.932543 -243.085776 \nL 214.183776 -245.671003 \nL 211.947562 -248.256231 \nL 210.313022 -250.841459 \nL 209.34471 -253.426687 \nL 209.077812 -256.011915 \nL 209.515711 -258.597143 \nL 210.630186 -261.182371 \nL 212.364238 -263.767598 \nL 214.637192 -266.352826 \nL 217.351471 -268.938054 \nL 220.400277 -271.523282 \nL 223.67533 -274.10851 \nL 227.07388 -276.693738 \nL 230.504351 -279.278966 \nL 233.890206 -281.864193 \nL 237.171868 -284.449421 \nL 240.306805 -287.034649 \nL 243.268075 -289.619877 \nL 246.041775 -292.205105 \nL 248.623909 -294.790333 \nL 251.017153 -297.375561 \nL 253.227929 -299.960788 \nL 255.264071 -302.546016 \nL 257.133226 -305.131244 \nL 258.842 -307.716472 \nL 260.395752 -310.3017 \nL 261.798869 -312.886928 \nL 263.055331 -315.472156 \nL 264.169364 -318.057383 \nL 265.146036 -320.642611 \nL 265.991679 -323.227839 \nL 266.714083 -325.813067 \nL 267.322466 -328.398295 \nL 267.827241 -330.983523 \nL 271.388384 -330.983523 \nL 271.388384 -330.983523 \nL 271.893159 -328.398295 \nL 272.501542 -325.813067 \nL 273.223946 -323.227839 \nL 274.069589 -320.642611 \nL 275.046261 -318.057383 \nL 276.160294 -315.472156 \nL 277.416756 -312.886928 \nL 278.819873 -310.3017 \nL 280.373625 -307.716472 \nL 282.082399 -305.131244 \nL 283.951554 -302.546016 \nL 285.987696 -299.960788 \nL 288.198472 -297.375561 \nL 290.591716 -294.790333 \nL 293.17385 -292.205105 \nL 295.94755 -289.619877 \nL 298.90882 -287.034649 \nL 302.043757 -284.449421 \nL 305.325419 -281.864193 \nL 308.711274 -279.278966 \nL 312.141745 -276.693738 \nL 315.540295 -274.10851 \nL 318.815348 -271.523282 \nL 321.864154 -268.938054 \nL 324.578433 -266.352826 \nL 326.851387 -263.767598 \nL 328.585439 -261.182371 \nL 329.699914 -258.597143 \nL 330.137812 -256.011915 \nL 329.870915 -253.426687 \nL 328.902603 -250.841459 \nL 327.268063 -248.256231 \nL 325.031849 -245.671003 \nL 322.283082 -243.085776 \nL 319.128832 -240.500548 \nL 315.686433 -237.91532 \nL 312.07554 -235.330092 \nL 308.41072 -232.744864 \nL 304.795232 -230.159636 \nL 301.316452 -227.574408 \nL 298.043155 -224.98918 \nL 295.024646 -222.403953 \nL 292.291501 -219.818725 \nL 289.857558 -217.233497 \nL 287.722742 -214.648269 \nL 285.876259 -212.063041 \nL 284.299798 -209.477813 \nL 282.970455 -206.892585 \nL 281.86318 -204.307358 \nL 280.952684 -201.72213 \nL 280.214808 -199.136902 \nL 279.627414 -196.551674 \nL 279.170881 -193.966446 \nL 278.828311 -191.381218 \nL 278.585514 -188.79599 \nL 278.430844 -186.210763 \nL 278.354929 -183.625535 \nL 278.350334 -181.040307 \nL 278.411186 -178.455079 \nL 278.532795 -175.869851 \nL 278.711315 -173.284623 \nL 278.943457 -170.699395 \nL 279.226294 -168.114168 \nL 279.557163 -165.52894 \nL 279.933632 -162.943712 \nL 280.35351 -160.358484 \nL 280.814822 -157.773256 \nL 281.3157 -155.188028 \nL 281.854116 -152.6028 \nL 282.427422 -150.017573 \nL 283.031715 -147.432345 \nL 283.661067 -144.847117 \nL 284.306721 -142.261889 \nL 284.956397 -139.676661 \nL 285.593844 -137.091433 \nL 286.198804 -134.506205 \nL 286.747463 -131.920978 \nL 287.213459 -129.33575 \nL 287.569395 -126.750522 \nL 287.788753 -124.165294 \nL 287.848014 -121.580066 \nL 287.728771 -118.994838 \nL 287.419571 -116.40961 \nL 286.917268 -113.824383 \nL 286.227717 -111.239155 \nL 285.365713 -108.653927 \nL 284.354163 -106.068699 \nL 283.222597 -103.483471 \nL 282.005157 -100.898243 \nL 280.738302 -98.313015 \nL 279.458454 -95.727788 \nL 278.199808 -93.14256 \nL 276.992503 -90.557332 \nL 275.861286 -87.972104 \nL 274.824722 -85.386876 \nL 273.894969 -82.801648 \nL 273.078034 -80.21642 \nL 272.374441 -77.631192 \nL 271.780158 -75.045965 \nz\n\" id=\"mbff06a6a8f\" style=\"stroke:#3f3f3f;stroke-width:1.5;\"/>\n </defs>\n <g clip-path=\"url(#pcc73395aa6)\">\n <use style=\"fill:#e1812c;stroke:#3f3f3f;stroke-width:1.5;\" x=\"0\" xlink:href=\"#mbff06a6a8f\" y=\"352.15625\"/>\n </g>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m2e4a98e0b1\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"118.282812\" xlink:href=\"#m2e4a98e0b1\" y=\"314.6\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <g transform=\"translate(115.101562 329.198437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"269.607812\" xlink:href=\"#m2e4a98e0b1\" y=\"314.6\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 1 -->\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n </defs>\n <g transform=\"translate(266.426562 329.198437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n </g>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- Color -->\n <defs>\n <path d=\"M 64.40625 67.28125 \nL 64.40625 56.890625 \nQ 59.421875 61.53125 53.78125 63.8125 \nQ 48.140625 66.109375 41.796875 66.109375 \nQ 29.296875 66.109375 22.65625 58.46875 \nQ 16.015625 50.828125 16.015625 36.375 \nQ 16.015625 21.96875 22.65625 14.328125 \nQ 29.296875 6.6875 41.796875 6.6875 \nQ 48.140625 6.6875 53.78125 8.984375 \nQ 59.421875 11.28125 64.40625 15.921875 \nL 64.40625 5.609375 \nQ 59.234375 2.09375 53.4375 0.328125 \nQ 47.65625 -1.421875 41.21875 -1.421875 \nQ 24.65625 -1.421875 15.125 8.703125 \nQ 5.609375 18.84375 5.609375 36.375 \nQ 5.609375 53.953125 15.125 64.078125 \nQ 24.65625 74.21875 41.21875 74.21875 \nQ 47.75 74.21875 53.53125 72.484375 \nQ 59.328125 70.75 64.40625 67.28125 \nz\n\" id=\"DejaVuSans-67\"/>\n <path d=\"M 30.609375 48.390625 \nQ 23.390625 48.390625 19.1875 42.75 \nQ 14.984375 37.109375 14.984375 27.296875 \nQ 14.984375 17.484375 19.15625 11.84375 \nQ 23.34375 6.203125 30.609375 6.203125 \nQ 37.796875 6.203125 41.984375 11.859375 \nQ 46.1875 17.53125 46.1875 27.296875 \nQ 46.1875 37.015625 41.984375 42.703125 \nQ 37.796875 48.390625 30.609375 48.390625 \nz\nM 30.609375 56 \nQ 42.328125 56 49.015625 48.375 \nQ 55.71875 40.765625 55.71875 27.296875 \nQ 55.71875 13.875 49.015625 6.21875 \nQ 42.328125 -1.421875 30.609375 -1.421875 \nQ 18.84375 -1.421875 12.171875 6.21875 \nQ 5.515625 13.875 5.515625 27.296875 \nQ 5.515625 40.765625 12.171875 48.375 \nQ 18.84375 56 30.609375 56 \nz\n\" id=\"DejaVuSans-111\"/>\n <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n </defs>\n <g transform=\"translate(180.890625 342.876562)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-67\"/>\n <use x=\"69.824219\" xlink:href=\"#DejaVuSans-111\"/>\n <use x=\"131.005859\" xlink:href=\"#DejaVuSans-108\"/>\n <use x=\"158.789062\" xlink:href=\"#DejaVuSans-111\"/>\n <use x=\"219.970703\" xlink:href=\"#DejaVuSans-114\"/>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_3\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"md3260059a6\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"304.61037\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 1 -->\n <defs>\n <path d=\"M 10.59375 35.5 \nL 73.1875 35.5 \nL 73.1875 27.203125 \nL 10.59375 27.203125 \nz\n\" id=\"DejaVuSans-8722\"/>\n </defs>\n <g transform=\"translate(20.878125 308.409589)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-8722\"/>\n <use x=\"83.789062\" xlink:href=\"#DejaVuSans-49\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"270.061734\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 0 -->\n <g transform=\"translate(29.257813 273.860952)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"235.513097\"/>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 1 -->\n <g transform=\"translate(29.257813 239.312316)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_6\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"200.964461\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 2 -->\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n </defs>\n <g transform=\"translate(29.257813 204.76368)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_7\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"166.415825\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 3 -->\n <defs>\n <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n </defs>\n <g transform=\"translate(29.257813 170.215043)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-51\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_6\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"131.867188\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 4 -->\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <g transform=\"translate(29.257813 135.666407)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_7\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"97.318552\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- 5 -->\n <defs>\n <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n </defs>\n <g transform=\"translate(29.257813 101.117771)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_8\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"62.769915\"/>\n </g>\n </g>\n <g id=\"text_11\">\n <!-- 6 -->\n <defs>\n <path d=\"M 33.015625 40.375 \nQ 26.375 40.375 22.484375 35.828125 \nQ 18.609375 31.296875 18.609375 23.390625 \nQ 18.609375 15.53125 22.484375 10.953125 \nQ 26.375 6.390625 33.015625 6.390625 \nQ 39.65625 6.390625 43.53125 10.953125 \nQ 47.40625 15.53125 47.40625 23.390625 \nQ 47.40625 31.296875 43.53125 35.828125 \nQ 39.65625 40.375 33.015625 40.375 \nz\nM 52.59375 71.296875 \nL 52.59375 62.3125 \nQ 48.875 64.0625 45.09375 64.984375 \nQ 41.3125 65.921875 37.59375 65.921875 \nQ 27.828125 65.921875 22.671875 59.328125 \nQ 17.53125 52.734375 16.796875 39.40625 \nQ 19.671875 43.65625 24.015625 45.921875 \nQ 28.375 48.1875 33.59375 48.1875 \nQ 44.578125 48.1875 50.953125 41.515625 \nQ 57.328125 34.859375 57.328125 23.390625 \nQ 57.328125 12.15625 50.6875 5.359375 \nQ 44.046875 -1.421875 33.015625 -1.421875 \nQ 20.359375 -1.421875 13.671875 8.265625 \nQ 6.984375 17.96875 6.984375 36.375 \nQ 6.984375 53.65625 15.1875 63.9375 \nQ 23.390625 74.21875 37.203125 74.21875 \nQ 40.921875 74.21875 44.703125 73.484375 \nQ 48.484375 72.75 52.59375 71.296875 \nz\n\" id=\"DejaVuSans-54\"/>\n </defs>\n <g transform=\"translate(29.257813 66.569134)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-54\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_9\">\n <g id=\"line2d_11\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"42.620313\" xlink:href=\"#md3260059a6\" y=\"28.221279\"/>\n </g>\n </g>\n <g id=\"text_12\">\n <!-- 7 -->\n <defs>\n <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n </defs>\n <g transform=\"translate(29.257813 32.020498)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-55\"/>\n </g>\n </g>\n </g>\n <g id=\"text_13\">\n <!-- Item Size -->\n <defs>\n <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-73\"/>\n <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n <path d=\"M 52 44.1875 \nQ 55.375 50.25 60.0625 53.125 \nQ 64.75 56 71.09375 56 \nQ 79.640625 56 84.28125 50.015625 \nQ 88.921875 44.046875 88.921875 33.015625 \nL 88.921875 0 \nL 79.890625 0 \nL 79.890625 32.71875 \nQ 79.890625 40.578125 77.09375 44.375 \nQ 74.3125 48.1875 68.609375 48.1875 \nQ 61.625 48.1875 57.5625 43.546875 \nQ 53.515625 38.921875 53.515625 30.90625 \nL 53.515625 0 \nL 44.484375 0 \nL 44.484375 32.71875 \nQ 44.484375 40.625 41.703125 44.40625 \nQ 38.921875 48.1875 33.109375 48.1875 \nQ 26.21875 48.1875 22.15625 43.53125 \nQ 18.109375 38.875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.1875 51.21875 25.484375 53.609375 \nQ 29.78125 56 35.6875 56 \nQ 41.65625 56 45.828125 52.96875 \nQ 50 49.953125 52 44.1875 \nz\n\" id=\"DejaVuSans-109\"/>\n <path id=\"DejaVuSans-32\"/>\n <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n <path d=\"M 5.515625 54.6875 \nL 48.1875 54.6875 \nL 48.1875 46.484375 \nL 14.40625 7.171875 \nL 48.1875 7.171875 \nL 48.1875 0 \nL 4.296875 0 \nL 4.296875 8.203125 \nL 38.09375 47.515625 \nL 5.515625 47.515625 \nz\n\" id=\"DejaVuSans-122\"/>\n </defs>\n <g transform=\"translate(14.798438 184.135156)rotate(-90)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-73\"/>\n <use x=\"29.492188\" xlink:href=\"#DejaVuSans-116\"/>\n <use x=\"68.701172\" xlink:href=\"#DejaVuSans-101\"/>\n <use x=\"130.224609\" xlink:href=\"#DejaVuSans-109\"/>\n <use x=\"227.636719\" xlink:href=\"#DejaVuSans-32\"/>\n <use x=\"259.423828\" xlink:href=\"#DejaVuSans-83\"/>\n <use x=\"322.900391\" xlink:href=\"#DejaVuSans-105\"/>\n <use x=\"350.683594\" xlink:href=\"#DejaVuSans-122\"/>\n <use x=\"403.173828\" xlink:href=\"#DejaVuSans-101\"/>\n </g>\n </g>\n </g>\n <g id=\"line2d_12\">\n <path clip-path=\"url(#pcc73395aa6)\" d=\"M 118.282812 270.061734 \nL 118.282812 62.769915 \n\" style=\"fill:none;stroke:#3f3f3f;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_13\">\n <path clip-path=\"url(#pcc73395aa6)\" d=\"M 118.282812 200.964461 \nL 118.282812 97.318552 \n\" style=\"fill:none;stroke:#3f3f3f;stroke-linecap:square;stroke-width:4.5;\"/>\n </g>\n <g id=\"line2d_14\">\n <path clip-path=\"url(#pcc73395aa6)\" d=\"M 269.607812 235.513097 \nL 269.607812 62.769915 \n\" style=\"fill:none;stroke:#3f3f3f;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_15\">\n <path clip-path=\"url(#pcc73395aa6)\" d=\"M 269.607812 166.415825 \nL 269.607812 97.318552 \n\" style=\"fill:none;stroke:#3f3f3f;stroke-linecap:square;stroke-width:4.5;\"/>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 42.620313 314.6 \nL 42.620313 7.2 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 42.620312 314.6 \nL 345.270312 314.6 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"PathCollection_1\">\n <defs>\n <path d=\"M 0 1.5 \nC 0.397805 1.5 0.77937 1.341951 1.06066 1.06066 \nC 1.341951 0.77937 1.5 0.397805 1.5 0 \nC 1.5 -0.397805 1.341951 -0.77937 1.06066 -1.06066 \nC 0.77937 -1.341951 0.397805 -1.5 0 -1.5 \nC -0.397805 -1.5 -0.77937 -1.341951 -1.06066 -1.06066 \nC -1.341951 -0.77937 -1.5 -0.397805 -1.5 0 \nC -1.5 0.397805 -1.341951 0.77937 -1.06066 1.06066 \nC -0.77937 1.341951 -0.397805 1.5 0 1.5 \nz\n\" id=\"m731b2068e2\" style=\"stroke:#3f3f3f;\"/>\n </defs>\n <g clip-path=\"url(#pcc73395aa6)\">\n <use style=\"fill:#ffffff;stroke:#3f3f3f;\" x=\"118.282812\" xlink:href=\"#m731b2068e2\" y=\"131.867188\"/>\n </g>\n </g>\n <g id=\"PathCollection_2\">\n <g clip-path=\"url(#pcc73395aa6)\">\n <use style=\"fill:#ffffff;stroke:#3f3f3f;\" x=\"269.607812\" xlink:href=\"#m731b2068e2\" y=\"97.318552\"/>\n </g>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"pcc73395aa6\">\n <rect height=\"307.4\" width=\"302.65\" x=\"42.620313\" y=\"7.2\"/>\n </clipPath>\n </defs>\n</svg>\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVcL/8c+ZPpPeCQRCgNCLlJViRUThEQsI1t3fuuuKDcWKZbFgWcvu2lgfC+q6q65rwfZYWFwbukrvoRNCCBDSk0mZfn5/JEEXKQmZmTMzOe/XKy9hEu79Isk3N+eee46QUqJpmqaFn0F1AE3TtM5KF7CmaZoiuoA1TdMU0QWsaZqmiC5gTdM0RUyqA7THpEmT5KJFi1TH0DRNay9xuBej6gq4oqJCdQRN07SgiaoC1jRNiyW6gDVN0xTRBaxpmqaILmBN0zRFdAFrmqYpogtY0zRNEV3AmqZpiugC1jRNU0QXsKZpmiK6gDVN0xTRBaxpmqaILmBN0zRFomo1NE3T1HG73dw0+0YqK39cFKtXr9488uhjCHHYxb60Y9AFrGlam2zbto3NW7YyNM1DkjnAgSYjS5dVUllZSXp6uup4UUkPQWia1ibbt28H4Mr+9Vw1sIGLejcCzcWsHR9dwJqmtcmWLVtIskKyRQLQI96HEM2va8dHWQELIfoJIdb+5K1OCHGTqjyaph3dhnVryU900zrcazNBj/gAGzZsUBssiikbA5ZSbgVOABBCGIG9wPuq8miadmTl5eXsP1DG+D6+/3q9b5KbJZsK8Pl8mEz6llJ7RcoQxARgp5Ryt+ogmqb93OrVqwHon+L9r9f7J/twuz1s2rRJRayoFykFfAnw5uHeIYSYKYRYKYRYWV5eHuZYmqYBLF++nEQr9Ij3/9frA1O8GETz+7X2U17AQggLcB7wzuHeL6V8UUo5Sko5KiMjI7zhNE3D5/OxYvkyBie7MRwy3TfOLOmT5GPpD9+rCRfllBcwMBlYLaU8oDqIpmk/t379euqc9YzM8Bz2/SPS3ezYWci+ffvCnCz6RUIBX8oRhh80TVNvyZIlWI2CoWmHL+BftBTzkiVLwhkrJii9bSmEcAATgatV5ogFXq+Xu+66m3379x/2/XabjYceepDs7OwwJ9Oimdfr5asvv2BYmgur8fAfk2EP0CvRz78/X8wll1wS3oBRTukVsJSyUUqZJqWsVZkjFnz22WesXLmC4nrB7ibzz94KdxXx6quvqo6pRZmlS5dSW+fklC7uo37cyV2a2LGz8ODTclrb6Il7McDj8fC3v79GID6Tpvwz4TALo8jiZSxevJhf/epX5OTkKEipRaPPPv2UZBsMTvUe9ePGZHn4x47mC4H8/PwwpYt+kTAGrHXQBx98QGVFOa6uww9bvgCe7KFgMPLiiwvCnE6LVvv27eOHpT9walYjxmM0RbxZcmKGm0WffUpjY2N4AsYAXcBRrrS0lJdffgVfUnf8iV2P+HHSbMfVZShLlnzD99/rKUPasb3//vsYgAk5rjZ9/MTuLhqbXCxatCi0wWKILuAoJqXkySefwuPz48ode8Sr31aeLkOQjhT+/MST+ipFOyqn08knH/8fv8h0k2KVbfozvRN99Eny885b/8Tn8x37D2i6gKPZhx9+yLJlS2nqOgJpjT/2HzAYaewxjsqKcp588kmkbNsXltb5LFy4kMYmF1Nym9r156b0aGD/gTK++OKLECWLLbqAo9SWLVuY/5e/4EvKwZs1sM1/LpCQhbvrcD7//HM++eSTECbUolV9fT0L332HEemenz16fCzD0730SAjw2t//pq+C20AXcBSqqanh3vvux2+00dTr1GMOPRzK0/UE/EndeOqpp/VartrP/POf/8RZ38D5Pds/TCUEnJ/bQMneffzrX/8KQbrYogs4yrjdbu6++/eUl5fT0Ot0MNnafxAhaMo7FZ/Ryp133sX+Izy8oXU+FRUVvPP2W4zJcpOX2L6r31ajMjz0TvLzyssv4XK17QZeZ6ULOIoEAgEeevhhNm0qoDHvNALxmcd9LGm205A/kdr6RubMuQOn0xnEpFq0eumll/D5vEzvdfw3aYWAS3rXU1lVzVtvvRXEdLFHF3CUkFLyzDPP8O2SJbi6n4gvtWeHjxmwp9DQ+wxK9u7lzrvuoqmpfTdctNiyceNGFi1axOTuTWTaAx06Vr9kH6Mz3bzx+uv6J6yj0AUcBaSUPPfcc3zwwQd4ugzG22Vw0I7tT8ymMe9UCgoKuOvuu3G7j/7IqRabfD4fTz35BGl2jmvs93AuzW9ESC/zn3lGz7g5Al3AUeCVV17h7bffxpM5AHfOL4J+fF9qHk09T2HtmjXMnXsPHs/hV73SYtdbb73Fjp2FXNbbecRFd9or1RpgWs8Gvv/hB7766qvgHDTG6AKOYFJKXnnlFV577TU86X1x9xjT7hkPbeVL74Or50msWLGcuffco6+EO5Hdu3fz6l9f4RcZbn6RGdxvvmfluOiV6Ofpp56kpqYmqMeOBbqAI5SUkgULFvD3v/+9uXx7nhSy8m3lzeiHK3ccy5ct4/dz5+oS7gR8Ph+PPPIHrAY/v+7XEPTjGw1w1QAnDfVO/vynP+mhiEPoAo5AUkqef/55/vGPf+DJ6BeW8m3lzexPU8+TWbliBXfddZeeRhTjXnnlFbZs2coVfZ0kWkJTjt3i/Ezv1cC3333Hxx9/HJJzRCtdwBFGSsmzzz7LW2+9hSezP+7ccWEr31a+jL405Z3C6tWrufPOO/XsiBi1evVq3nzzH5ze1cWJQR56ONSk7i4Gp3r5y/xnKCoqCum5ooku4AgipWT+/Pm8++67eDIH4u5x7AV2QsWXnk9T3qmsXbeOO+7QJRxrysvLeWDe/WQ7JJfnB3/o4VAGATMHOLEKL/feM1cvBtVCF3CEaJ3n+9577+HJGoS7x2hl5dvKl96HprxTWb9hPXPm3KGHI2KEx+PhvnvvwdXg5IbBtUGb9XAsyVbJdQNr2VNSwqOPPqrHg9EFHBGklLz44ou8//77zeXb/UTl5dvKl9abprzT2LBxA7+fO1dPUYtyUkqefvppNm3ewlX96+gWd3yPGx+vgSk+LundwJIlS3jjjTfCeu5IpAs4Arz22mu8+eabeDL6R1T5tvKl9aIp9yRWrVzJ/fPm6VWuothbb73FJ598wrm5jUGfctZWk7q7GJPl5qWXXuLrr79WkiFS6AJW7OOPP+aVV17Bm9YbdxsWVVfFl9EXV48xfP+f//DEE0/oHx+j0LfffssLLzzPiZluLuylbkxfCPhd/3ryk/z84eGHKSgoUJZFNV3ACq1Zs4YnnngSf1I3XHmnRGz5tvJmDcSdPYxPP/2Ut99+W3UcrR3Wr1/Pgw88QK9EPzMH1GNQ/KlmMcLsIbUkmz3cfded7N69W20gRXQBK1JSUsLcuffgtybQ2Gs8iOj4p/B0G4E3pSfPPf+83lsuSmzfvp0777iDNIuHm4fUYgnTTbdjSbRIbhtag3Q7ue3WWygrK1MdKeyi46s+xvh8PuY98ACNHh8Nfc4Ek0V1pLYTAlfeqQQcaTz88B+oqKhQnUg7ij179jDn9tuwySZuH1YTsoctjlcXR4DbhtZQX1vJbbfeQnV1tepIYaULWIE33niD7du20dhjLNKWqDpO+xlNNPY6jUaXi8cff1yPB0eoPXv2cNPsG/E31TJnWDXpto4tMRkqPRP83DKkltJ9Jdx80+xOVcK6gMNsx44d/O1vf8eb2gtfap7qOMdN2pJo6jaK5cuX8+mnn6qOox2itXy9DdXcOayGrnGRWb6t+iX7uGVoLftKijtVCSstYCFEshDiXSHEFiHEZiHEWJV5wmHBgpeQRlPzNvJRzps5gEBCFi+9/IpeuCeCFBYWctONNxws35x2bqypysCUH0v4phtvoLy8XHWkkFN9Bfw0sEhK2R8YBmxWnCekNm3axLJlS3FlDgaTVXWcjhMCV9cRVFdV6kVWIkRBQQGzb7yBQFNNVJVvq4EpPm4bWkvZ/hJmXX8dJSUlqiOFlLICFkIkAqcCLwNIKT1SypheMPT1119HmO142rGN/PGyFi/FWrw05OfxJ2bjT8zmtdff0A9oKLZy5UpuveVm7IF65g6vDln5vr7NwevbHCE5NkD/FB93nlBDY005N8y6nu3bt4fsXKqpvALuBZQDfxVCrBFCvCSEiDv0g4QQM4UQK4UQK6P5RxKn08myZctwp/UGoznk5zM0VmForAr5eQA8GQOoqa5i3bp1YTmf9nOLFi3ijjvmkGF2MXd4NRkd3NPtaIrrTRTXm0J2fIC8RD+/H16NcNUy+8YbWLFiRUjPp4rKAjYBI4DnpJTDgQbgzkM/SEr5opRylJRyVEZGRrgzBs13332H3+/HmxK9N96OxJeUgzCaO/1jpSpIKfnb3/7Go48+Sv8kN78fUUOyNTZmpXSNC3DvyGrSTY3ccccdMXmzV2UBlwAlUsplLb9/l+ZCjklLly4FazyBuHTVUYLPaMKT2I3/6AczwsrtdvPII4/w17/+lZO7uLh1aB0OU2yUb6tUa4DfD69hULKbxx9/nAULFhAIRPaMjvZQVsBSylJgjxCiX8tLE4BNqvKE2pat2/A60iP+cePj5Y/PpKqystNMH1KtsrKSm2+azeLFi5mW18hVAxowqb6lHiJ2k+TmoXWM7+rijTfeYO7c38fMesKq/8luAN4QQqwHTgD+oDhPSNTX13OgdD8BR5rqKCETcKQCzfOctdDatm0b11x9FTu3beGGwU4uyGuK1e/rB5kMcEW/Bn6Z38DSH37g+uuuZd++fapjdZjSApZSrm0Z3x0qpbxAShmTl0979+4FIGBPUpwkdAL2FKD5AQAtdBYtWsSs668n0FDF3BE1ypaUVEEIOKu7i9uG1XFg726unnkVy5cvVx2rQ1RfAXcKlZWVAATMoZu6o5o02UAIqqrCM/Ois/F6vTz55JM8+uij9I5vYt7IKnITomuOb7AMTvUyb2Q1yTi54445vPbaa1E7LqwLOAxaS0nGcAEjBMLiOPjNRguesrIybpo9mw8//JDJPZqYM6w24hbVCbcsR/MMiTGZbl5++WXmzp2L0+lUHavddAGHQW1tLQDSbFOcJLQCJht1dXWqY8SUlStXctXvrmTHtk1cP8jJpX0aMeqvWgCsRrhmYD2X5zew7IfvmXnV79i2bZvqWO2i/ynDwOl0gsEIhtBOXlfNbzDrAg4Sv9/Pq6++yu2330Z8oJZ5I6sZndV5xnvbSgg4u7uLu0fU4q45wPXXX8dHH30UNSv06QIOg7q6OkSMX/0CSJOVmparfe34VVdXM+f223n11VcZl+Xm/pHVEb+amWr5ST4eGFVFv4QmnnjiCR5++OGomKqmCzgMqqqqCJg6QwHb9U24Dlq7di2/++1vWL9uNb/pV8/MAfVh2zY+2iVaJLcNq2NaXiNffPFvrrl6JoWFhapjHZUu4DAoL6/Ab4rhG3AtpMVBQ3293rr+OAQCAd544w1uuflmzJ5q7htZw/hu7pif3xtsBgEX5DVxxwm11JaVcO01V/PZZ5+pjnVEuoBDTEpJ6YEDBCyxX8ABS/NaSqWlpYqTRJfa2lruuvNOFixYwIkZLuaNrKJHlC0jGWkGpvh4cFQVveOaeOyxx3j00UdxuVyqY/2MLuAQq6iooKHeefBBhVjW+nfctWuX4iTRo6CggN9d+VtWrVzOr/vWc+2geuyxfa82bJKtkjkn1HJ+z0b+tWgR111zTcQ9KKQLOMRax6BaH9WNZQF7MgjBzp07VUeJeFJKPvjgA2bfeCM0VDB3RA0TcvSQQ7AZBFzYq4lbh9VRtq+ImVf9jiVLlqiOdZAu4BBbu3YtCAP+TlDAGExIRypr1+p1gY+mdRWzp556isEpTTwwqppeiXrIIZSGpnl5cFQ1Xa2N3Hvvvbz44ov4/er/n+sCDrFly5fjj88EYxRtPd8BnoSubCzYGBVTgFQoLS3l+uuv4/OWVcxuGuIkzhwdc1ajXZotwN3Daxjf1cU//vEP7phz+8GHpFTRBRxC5eXlFO7ciS+xm+ooYeNPyiHg98fsDgYdUVBQwDVXz2Tf7p3cPLSOC/KaMOghh7AyG+A3/Ru4sn89a9es5rpr1Y4L6wIOoc8//xwAb2pPtUHCyJ+QhbA4WLz4c9VRIsoXX3zBTTfNxuKt5d4R1ZyQ7lUdqVM7raubu4bX4qzcz3XXXMOaNWuU5NAFHCJSSj79bBGBhCykLXaXofwZYcCd2osflv5ATU1M77HaZm+88QYPPvggveJc3DdCP9UWKfKTfNw3oppE4eS2225l8eLFYc+gCzhENm7cSMmeYjxpfVRHCTtvej4Bv59FixapjqKUlJIFCxawYMECxmS5mXNCLQmdfBWzSJNhD3DPiBr6Jnp45JE/8NFHH4X1/LqAQ2ThwoUIkxVvai/VUcIuYE/Bn9CF9957PyLuNKsQCASYP38+b7zxBqd3dXHNwHrM+qstIjlMkluH1jI01cMTTzzBW2+9FbZz60+JECgrK2PJkiW40/PDsgV9JPJkDqSs7ADfd9KNOhcsWMB7773H2d2b+E2/Bn2zLcJZjDB7iJMTM90899xzfPjhh2E5ry7gEPjoo48IBAJ4MgeojqKML6UHWON57733VUcJu/fff58333yTM7q5uKxPo364IkqYDHDtwHqGpXl4+qmnwnLxoAs4yDweDx999H/4knsgrQmq46gjDLjT+7FmzWp2796tOk3YLF26lPnPPMMJ6R5+ld+gyzfKGA1w/SAnuQk+5s27P+QLvOsCDrJvvvmGurraTn3128qb0RdhMPLBBx+ojhIWNTU1PPqHh8mJ93P9IKfeuSJK2Uxwy9BaHMLDww89iNvtDtm59KdIkC1e/DnYEvAndlUdRTlptuNJ7sG///0FPp9PdZyQe+qpp3DWO7l6QJ1ewzfKJVkkV/arY3fxHl599dWQnUcXcBDV1NSwatVK3Mk90T97NvOl9sLprGP16tWqo4TUihUr+Prrr5nas5HueinJmDA0zctp2S7e+uc/QzaMpgs4iJYuXUogEMCXmqc6SsTwJeUgTBa+/fZb1VFC6p133ibZBv/To0l1FC2IZvRuxCgk7733XkiOrws4iLZs2YIwWQg40lRHiRwGI15HOps2b1GdJGSKi4tZvnwFZ2Q3YtJfUTEl0SIZk+Vi0aLPQrLtvdJPFyFEkRBigxBirRBipcoswbBl61Z89lQ9/HAIvyONol2FeL2xuf5B63Sl07tG3o4LWsed3tWN2+1h1apVQT92JHy/Hi+lPEFKOUp1kI7at28f/s607kMbBWxJ+P1+ysvLVUcJiV27dpFia96BQYs9ufE+BKHZ6SUSCjhmSAmg/urXWrwUY2MlxsZK7Fs+xVq8VG0g0fxpJmVsFlTRrkK62jvHRqSvb3NQWGdkR62Re5Yn8fq22N/r0GKEzDhCciNOdQFLYLEQYpUQYqbiLDHD0FiF8HsRfi8mZymGRtVbxcdm8bYyGIwR8G03PLbWmDFYHFxw4UUc8MWztabzPGpvMAS/LlUX8ElSyhHAZOB6IcSph36AEGKmEGKlEGJlpP8Im56ehsFdpzpGxDG4nQghSEmJzY1J0zMyqPZ2jiJq9AmmTJnCrFmzOOecc2j0xf63Himh2gXp6elBP7bSApZS7mv5bxnwPnDiYT7mRSnlKCnlqIyMjHBHbJchgwdjbqxoHYvQWhjry+iZl4fDEZs/rmZnZ1PWJGiK/WdNcJgkH3/8MfPnz+eTTz7BYYr9z/WyJgMeP3Tp0iXox1ZWwEKIOCFEQuuvgbOAjaryBMPgwYORPg+GhgrVUSKH34e5sYIhgwerThIyp556Kl4/rCy3qo4ScnaTxOVysXDhQlwuF/ZOUMD/KbUihODkk08O+rFVXgFnAd8JIdYBy4FPpJRRvYL32LFjsVptWMpjd85re5krdyB9Hs4880zVUUJm0KBBdOuazTf7bfqHnxjjC8B3BxyMHDmCzMzMoB9fWQFLKQullMNa3gZJKR9WlSVYEhISmDx5EuaqQoRXPxGFlFjLNtGnTz5DhgxRnSZkhBBcOH0G22pMLC/rHLtfdxaL9tioaIJp0y4MyfFV34SLORdeeCFCBrDsW6s6inKmyp2IphouumgGIsYfTjnvvPPom9+H13ck0OCN7b9rZ3Gg0cD7RXGccvLJjBs3LiTn0AUcZN27d+eCCy7AUra5c48F+9w49q6gb79+TJgwQXWakDOZTNw+5w6cXgMvbYknoIcioprHD89vTsRssXHj7NkhO48u4BC48sorSU5Jwb77e5Cdcwdca8kq8Lq47dZbMRo7x9qM+fn5XHvttawqt/DWjtic8dEZBCS8sCmewjojd951N6GcfaULOATi4+O5afZsDA0VnXIowlhTjKV8C9OnT6dv376q44TV9OnTmTp1Kp/tsbN4j011HK2dpIR/7nCwotzKtddex6mn/uzRhKDSBRwip59+OpMmTcK6by3Guv2q44SN8DQSV/Qf8nr14ne/+53qOGEnhGDWrFmcdNI4Xt8ex2fFuoSjRUDC69sdLNpjZ+rUqcyYMSPk59QFHEI33ngjXbt1w1G0pHPMipAB7Lu+wSwC3H/ffVitsT8v9nCMRiP33z+P0047jTd3xLGw0K6np0U4fwBe3hzH5yV2ZsyYwY033hiWG8e6gEPI4XAw7/77Mfk92Au/ifnxYMve1Rjr9nPzzTeRm5urOo5SZrOZe++9l8mTJ/NhkYNXt8bhi+1//qjV5BM8szGBb0ttXHHFFVx33XVhm7WjCzjE8vPzufnmmzDW7Yvp8WBjTTHW/es555xzmDx5suo4EcFoNHL77bdz2WWX8dU+G4+tTaLOo6eoRZIDjQYeWJ3Muiobs2fP5oorrgjrlEldwGHQWkrWfWsx1paojhN0wl1PXNG39O7dhxtvvFF1nIhiMBiYOXMmc+fOZVeDnftXpbLb2TlmhUS6gioT81anUEcCf/zjH5k6dWrYM+gCDpPZs2eT27MncUXfIjyNquMETyCAo/BrbCYjDzwwr9OO+x7LmWeeyTPz54MjlQdWJ/P1PqseF1YkIOGDXXYeX5dEWpfuPP/Ci4wcOVJJFl3AYWKz2Xhg3jzMNN+oipXxYMveVRjqy5gz53a6deumOk5E69+/PwteeplhJ4zglS3xvLApHlcnWEEtktR6BH9cl8h7uxyceeZEnnv+BaWft7qAwyg3N5dbbrkZY91+zAc2qY7TYUZnKdbSDUyZMoXx48erjhMVUlJSePyPf+K3v/0tS8ts3LcqlSI9JBEWG6vM3LMyle1OB7fffjt333238iVSdQGH2dlnn824ceOw712NcNWqjnP8/D4cu/9DZmYW1113neo0UcVgMPD//t//489PPIHHmsq8Vcl8VmzTjy+HiC8Ab+5w8PjaRBIzcnju+ec555xzImJ9El3AYSaE4NZbb8Vut+Io+i5qF2+37lsDTbXceecdyq8iotXw4cN55a+vMm7cyby5I44/rUuk2q2+FGLJ/gYDD6xO4bNiO+eddx4vLniJ3r17q451kC5gBdLS0rju2msxOA9gqg7+Rn+hJlx1WMoKmDRpEiNGjFAdJ6olJSXxwIMPcuutt7K93sHvV6SyslwvadlRUsKXe63cszKFKpnIQw89xC233ILNFllPJuoCVmTy5Mn0yM3Fvm8VBKLrhpx17yrMJlOnfNQ4FIQQnHvuuby44CWye/ThmQ0JvLw5Tt+gO051HsGTGxJ4dWs8Q08YwSt/fTUku1kEgy5gRYxGI9ddey001WKu2KY6TpsZGqswV+3i4osuCskmhZ1Zbm4u//vcc1x++eUsKbUxd2UqO+tMqmNFlXUVZu5ekUpBrYNZs2bx+B//FNGfp7qAFRo9ejS9+/TBWr45asaCzQc2YbZYuOiii1RHiUlms5mrrrqKp556GuIyeHBVEh8V2fUNumPw+OG1bQ7+vD6R9OyevPDCi0yfPj0kW8kHU2Sni3FCCC6cNg3RWI3RWao6zrH53FirCzn7rLNITExUnSamDRs2jJdf+Sunjx/Pu4UOHlmTRKVLf7keTkm9kftXpfB5iZ0LL7yQ5154gV69eqmO1Sb6X1SxCRMm4IiLw1yxXXWUYzJXFSL9Ps4//3zVUTqFhIQE7rnnXu666y6KXXH8fkUKq8rNqmNFjNYbbfetTKbBlMJjjz3GDTfcEFVPY+oCVsxqtXLSuHFY6koi/uk4U00x2dld6dOnj+oonYYQgrPPPpuXXn6F7nn5PL0hkde3OfBG9qdKyDX6BM8WxPPq1niGj/wFr/z1VUaPHq06VrvpAo4AJ510EtLrwug8oDrKkfk9mJz7OeWUkyNiAntn061bN+b/5VmmT5/O4hI7D61Opqypc375FjmN3LsyhZUVdmbOnMmjjz1GSkqK6ljHpXP+C0aYX/ziFwghMDojd+cMY30ZBAJReZURKywWC7NmzeKhhx6i3J/AvStTWFfZuYYkvt1v5cFVyUhHOk8//TSXXXZZxN9oO5roTR5D4uLiyM3tibGhXHWUIzLWlyOEYMCAAaqjdHonn3xy85zh7nk8sS6RD3fF/iwJXwBe3RrHgs3xDDlhOAteepkhQ4aojtVhuoAjxODBgzA3VETsdDRjQzk9cnP1Y8cRomvXrjz7v89x5sSJLNzlYP6GBNx+1alCo84jeGRNMl/utXHppZfy+ON/JDk5WXWsoNAFHCF69eqF9Lkjdu84s7uWfH3zLaLYbDbuvvtuZs2axZpKK39Ykxxza0nsbTAyb3UKuxtt3H///Vx99dWYTLHzcIryAhZCGIUQa4QQH6vOolKPHj0AMETiCml+H9LlPJhRixxCCKZPn87Df/gD+9125q1Kpbg+Npa33FRl4sHVyfgsyTz9zDOcfvrpqiMFnfICBmYDm1WHUK179+5AZBawwV0HQE5OjuIk2pGMHTuW+X95FuFI4Q9rktlWE91XiSvKLPxxfRKZXXvw3PMvxOy9B6UFLITIAc4BXlKZIxKkpaUhhEB4g7Bdkd+DzWZj+vTpzas/+T0dOpzwNACQlZXV8WxayOTn5/O/zz1PSkY2f1yXxEKMIDQAACAASURBVMaq6Jwh8d1+C38pSKBf/wHM/8uzdOnSRXWkkFF9BfwUMAc44rRyIcRMIcRKIcTK8vLInSXQUSaTieSUFAwtZdcRwudhypQpzJo1q3nhaV/HCtjQ8k0hIyOjw9m00MrKymL+X56lW/eePLE+kbUV0VXCX+218uLmBIYPH86f/vRnEhISVEcKKWUFLISYApRJKVcd7eOklC9KKUdJKUfFegGkp6cHZcNOabLw8ccfM3/+fD755BOkqWPry7ZmSk1N7XA2LfRSU1N56pln6N0nn/kbE9lUHR3DEf8ptfDq1njGjBnNI4882ilm3Ki8Aj4JOE8IUQT8EzhDCPG6wjzKJSclYfC7O34gowWXy8XChQtxuVxg7GAB+9zYHY6Yuvsc6xITE3n8j3+iW/cePLUhmZ21kf1vt6rczILNCZxwwjDmzXsgqtZz6AhlBSylvEtKmSOl7AlcAnwppfylqjyRICkpCWOgY8MFoSB8bhIT9Opn0SYpKYk/P/EkKemZ/HlDEgcaVY84Ht6OWhP/W5BIv379ePgPj3Sa8gX1Y8DaTzgcDvB7Vcf4uYCXuLg41Sm045CWlsaf/vwEwhLHkxuSafJF1jzhSpeBpzcmkZ6ZxaOPPd4phh1+KiIKWEr5tZRyiuocqjXPWIi8fWhEwIfN1nmuSmJNt27dmPfAg5Q2GfnfgviIeWzZ44enNybhNdh45NHHSEpKUh0p7CKigLVmFosFGZEF7O9UPxbGohEjRnDDDTewrtLCoj2RsTHlmzviKKozMPeee+nZs6fqOEroAo40eqlHLUQuuOACTjn5ZN4pjKPIqfZpuTUVZr7Ya+Oiiy5i3LhxSrOo1KYCFkKcLIT4TcuvM4QQeaGN1Tn5/X6EiLzviVIIfL4YXemlExFCcNvtt5OSksrzm5KULeru9Ahe2pJIn969Ov3O2sf8ahdC3AfcAdzV8pIZ6NTTxULF7XaDIQKf4xdG3J4gTI/TlEtKSuL2OXewr0HwWbFdSYa3dzpo8Bm4+/dzsVg6NkUy2rXlcmsqcB7QACCl3AfE9uMpitTU1IA5MsbnfkqabVRVVauOoQXJ6NGjOfXUU/hwt4PyMO+qsb3WxDf7bcyYMSNqNs4Mpbb83/dIKSUgAYQQej5SiFRXV+MzRmABm+zU1tQgI3StYq39Zs26AYPJwjs7wzftS0p4c0c86Wmp/PrXvw7beSNZWwr4bSHEC0CyEOIq4N/oxXNCYk/JXgKWyPv+FrDG4fV6qKqqUh1FC5LMzEymT5/BsjIre8K0fOW6SjM7ao1c8Zvfdrr5vkdyzAKWUv4JeBdYCPQD7pVSPhPqYJ1NfX09FeVlBByRt7lgwN68BsTOnTsVJ9GC6eKLL8Zut/H+rtCXoZTwXlE82V2ymDRpUsjPFy3achPuHmCLlPJ2KeVtUsrPhRAzw5CtUyksLATAb4+8BW/8Ld8UduzYoTiJFkyJiYlMu3A6q8otId9heUuNiaI6A5f/8ld6TZGfaMv/9RuAfwkhxv/ktWtClKfTWrVqFQiBPz5TdZSfM9nAnsyaNWtUJ9GC7Pzzz0cYDHxREtp7D5+X2EiIj2PixIkhPU+0aUsB7wUmAY8KIW5veU0/LRBky5YvJxCXAabIfOLMk9iVtWvXNk+V02JGRkYGp512Gt+U2kM2L7jaLVhVYWXKuefpJyoP0aafO6SUxcBpwEAhxDuAmgmEMaqyspKtW7bgTeyqOsoR+RK74fV6m6/UtZgyefJkGr2wvjI0i7cvO2BFyubzaP+tLQW8EkBK6ZJS/gb4Gujcs6eD7Msvv0RKiS81cudF+hO7Isx2Fi9erDqKFmQjRowgOTGB70tDc3X6Q5mNvvl99Kauh9GWWRBXHfL7Z6WUkdsUUeizRYsIxGcQsCerjnJkBiPulDy+++4/OJ1O1Wm0IDKZTJx6+njWV9uCPgxR5TKwq87I+DMmBPfAMeKIBSyEeLvlvxuEEOsPfQtfxNi2adMmCnfuxJPWR3WUY/Km98Hn87Jo0SLVUbQgGzNmDG6fZGtNcIch1rdsDDp69OigHjdWHG0+yOyW/3b6dXpD6d1330WYLHijoIADcekE4jN5d+FCpk2bhtEYgetWaMdl+PDhmE1GNlSZGZwavE0BNlSayUhPJS9Pr991OEe8ApZS7m/5724p5W6gHhgBpLf8XuugsrIyvv76G9xp+WCMjt1r3VmDOFBayg8//KA6ihZEdrud/v0HsK02eLd3pIRtdVaGjxiF0MusHtbRhiA+FkIMbvl1NrAR+C3wmhDipjDli2kLFy4kIAN4sgaqjtJmvpRcsCXw5j//qTqKFmSDhwyhyGnEE6SVR8tdBmrdMGjQoOAcMAYd7SZcnpRyY8uvfwN8LqU8FxhNcxFrHeB0Ovnwo4/wpvREWqNocTlhwJU5kIKNG9m4ceOxP16LGgMHDsQfgD31wXlSrbDOdPC42uEdrYB/OhA0AfgUQErpBBQt5Rw7Pv74Y1xNTXi6DFUdpd286X0RZhv/ePNN1VG0IGpdHnJPQ3DG9vfUGzEYDOTm5gbleLHoaAW8RwhxgxBiKs1jv4sAhBB2mhdl146Tz+fjnXffxZ/YlUBcmuo47Wc040rvx/fff09JSYnqNFqQZGdnY7NaKAnS6mglDSa653Tr9IuuH83RCvhKYBBwBXCxlLKm5fUxwF9DnCumff3111RVVuLOit6xMW/mABCChQsXqo6iBYnBYCCne3dKm4JTwAdcZnrk9gzKsWLV0WZBlEkpr5FSni+lXPyT179qWaJSO07vvfc+2JPxJ+WojnLcpMWBN6UXn372GY2NjarjaEHStWs3yl0d/wE3IKG8UdC1a+Q+Xh8JIm8HyBi3e/duNm0qwJWWH/U7IHsz+uJ2ufjmm29UR9GCJDs7m4omQUc3P6nzCLyB5uNpR6YLOMw+++wzEAZ86ZH/4MWx+OOzwJ7EJ59+qjqKFiTp6el4A9Do69jFQY2nuVrS0qLwHkcYKStgIYRNCLFcCLFOCFEghJinKku4SCn56uuv8SV2RZpjYEE5IXCn9mbjhg16u6IYkZravCFAradjBVzbUsCtx9MOry07YuQJIZ4QQrwnhPio9S0I53YDZ0gphwEnAJOEEGOCcNyIVVxczIHSUnzJ3VVHCRpfUvPfZdmyZYqTaMGQlJQEgNPbsWuz+pYCbz2ednhtmXH9AfAy8H8Ecf5vy07L9S2/Nbe8xfS2u8uXLwd+LK1YEHCkIqxxLFu2TK/3GgPi4po3he3oEESDr7nA4+PjO5wplrWlgF2h2oRTCGEEVgF9gGellDF9GbVlyxaELR5pjaFPSiHwODLZtHmL6iRaELQWcFMHC9jlF/91PO3w2vJzxtNCiPuEEGOFECNa34JxcimlX0p5ApADnNi69sRPCSFmCiFWCiFWlpeXB+O0ymzdug2PLfbGxAKOVMoOlOp1gmOAzda8N5w30LEC9vib5xWbzfqZraNpyxXwEOBXwBn8OAQhW34fFFLKGiHE1zTvPbfxkPe9CLwIMGrUqKgdovB6vezdW0Ige5jqKEHndzR/U9m1axdDh0bfo9Xaj1qfWuvowuzegMBi1rsfH0tb/g9NBXpJKT3BPLEQIgPwtpSvHTgTeCyY54gkVVVVSCmRltj7kUxamodUKioqFCfROqp1jWffEa6Ae8T72O1s/pjcBD894n2H/TifRG8/3wZt+T+0DkgGyoJ87mzgby3jwAbgbSnlx0E+R8RoLaeA2aE4SfAFLM1/p8rKSsVJtI461rq9v+zbSHHLaml3j6g7+rGClip2taWAs4AtQogVNE8dA0BKeV5HTiylXA8M78gxokltbS0A0mRTnCQEjBYQgpqammN/rBYVgjHWF7XjhWHUlgK+L+QpOoGmpqbmX0TJzhftIgTCaMHlcqlOonWQ39+8Gruxg5evBgGBgF619liOWcBSym+EELlAvpTy30IIB6A3A2un1gKWhhgdFzOafvwmo0Utn695TNdk6Nj1q0mA13f48WHtR215Eu4q4F3ghZaXutH8cIbWDm538+iNNMZoARtM+go4Bng8zffaTR28AjYbJF6vT18FH0Nb5gFfD5wE1AFIKbcDmaEMFYtaCxgRmwUcMBh//DtqUav1pxibqWNXwFZj85/XnxNH15YCdv90CpoQwoQeX2+3g5+IhtgcvZFCXwHHgtZ/w9YCPV6tf14PSx1dWwr4GyHE3YBdCDEReIfmdSG0dqitrUWYbVG/BvCRBIwWamuPPi1Ji3z19c3Ls9g7WMCOlivohoaGDmeKZW0p4DuBcmADcDXwqZTy9yFNFYNqa2tjcwpaC2my6WloMaD1cfI4c8cKOK6lgPXj6UfXlgHJG6SUTwMLWl8QQsxueU1ro/Lycvwmq+oYIRMw26muKMLn8+knoKJYXV3zTzHx5o7dPGst8Nb579rhteUK+NeHee2KIOeIaVJKdhXtxm9LVh0lZAK2JPw+H6WlpaqjaB1QXV2NAOI7eBMu0dJc4PqnoqM74qWKEOJS4DIg75AF2BMA/cxpO9TU1NBQ7ySQEsMFbG/+u+3atYucnOjdbLSzq66uJsEqMHZwr5yklgLWO6Uc3dF+Vvwe2A+kA3/+yetOYH0oQ8WajRubF3gLxMXu/lgBewoIAwUFBZxyyimq42jHqaqqiiSLv8PHsRrBbhK6gI/haNvS75ZSfi2lHCul/OYnb6ullPoRl3ZYuXIlwmjGHxfD06eNZvzxmSxfsUJ1Eq0Dyg6UkmoJzpd3ii1AtK/hHWpHLGAhhFMIUXeYN6cQQs83aiMpJT8sXYY3vgsYYnsTal9iVwp37tSrokWx8rIyUqzBeXot1eylrOxAUI4Vq452BZwgpUw8zFuClDIxnCGj2aZNmyg7UIo3JVd1lJDzpfQE4Msvv1QbRDsuLpeLmjon6bbgFHCaLcCB0v1BOVasiu1Lsgjwr3/9C2E04UvNUx0l5AL2ZALxGXy2aJHqKNpxaJ3BkmHr+BgwQIY9QHVNnX5C8ih0AYdQY2Mjn//733iScmNzGcrD8KT2pnDnTrZs0Zt0Rpt9+/YBzcUZDK1Fvn+/vgo+El3AIbR48WKaGhvxZPZXHSVsvGl9EEYzCxcuVB1Fa6e9e/cCkOUIzhVw63FKSkqCcrxYpAs4RAKBAO8uXEggLp1AfAzPfjiUyYI7LZ8vv/xS34yLMnv27CHOIkjo4GPIrbo4mq+kdQEfmS7gEFmxYgUle/bgzhwYswvwHIknawB+v5+PPvro2B+sRYzi4t10sXuDdjyHSZJsExQXFwftmLFGF3CIvPPuuwiLo1PcfDuUtCXhS+7O+x98qNeDjSJFu3aR4wjuFP+udg9Fu3YF9ZixRBdwCOzevZuVK1bgyugfs+v/HosnaxB1tTV89dVXqqNobVBbW0tNbR1d44Iz/tuqa5yP3buLkFIvIX44uoBDYNGiRSAMeDP6qY6ijD8hG+xJfPLpp6qjaG1QWFgIQE6QCzgnzk9jk4sDB/QDGYejCzjI/H4/i/61GF9SN6TZrjqOOkLgTu3DhvXrD05v0iJXawF3jw/uEET3+OZC37lzZ1CPGyt0AQfZ+vXrqa6qxJvWR3UU5bxpvQH0MEQU2LFjB4lWQZIluEMFOXE+BLqAj0QXcJCtX9+8UJwvsaviJOpJazzSkcK6detUR9GOYdvWLeTGuYM+Ycdugqw4ybZt24J74BihCzjINmzYgHSkQgzvftEe3rhMNmzciN8f3LFFLXg8Hg9Fu3eTmxCaf6OecR62bdVPRh6OsgIWQnQXQnwlhNgshCgQQsxWlSWYdhYW4nPE7rq/7RVwpNHU2KiXJYxgO3fuxO8PkJcQmlVmeyb6KCuvoLq6OiTHj2Yqr4B9wK1SygHAGOB6IcRAhXmCwuVyIQ2dY92HtpBGC4CeDxzBNm/eDECvxNAUcK+WYtfrg/ycsgKWUu6XUq5u+bUT2Ax0U5UnWDxuN7KTzv09HGlo3nRFr4gVuTZv3kySFVKDtA7woXom+BDix6LXfhQRY8BCiJ7AcGDZYd43UwixUgixMhp+jI2Lj0f4dNm0MviaAIiPj1ecRDuSTRs30CfBE7In5m0m6B4fYFNBQWhOEMWUF7AQIh5YCNwkpfzZThtSyhellKOklKMyMjLCH7Cd+ubnY27SY12tDI2V2OwOsrOzVUfRDqOmpoa9+0vpkxS8NSAOp0+ih02bCvTN2EMoLWAhhJnm8n1DSvmeyizBkp+fj2iqBn9oP6GPJuBIRRrNSKMZX0IXAo5UZVlMDRXk9+mNIca3Y4pWrRvG9kkK7TaP+UleGptcFBUVhfQ80UblLAgBvAxsllI+oSpHsJ188skQ8GOuVDfx3N1jDH5HGn5HGk39/wd3jzFKchgaKzE0VOhdkiPYhg0bMBtCdwOuVd+Wgt+wYUNIzxNtVF6WnAT8CjhDCLG25e1/FOYJioEDB9K7dx+s5Vugky9AYi7bjNliYfLkyaqjaEewYf06eib4MIe4CdJtAVJsPz6opDVTOQviOymlkFIOlVKe0PIW9Su3CCG48MJpiMYqTNW7VcdRRrjqsFYWctbEiSQkJKiOox1GU1MTW7dto3+yJ+TnEgL6JblZt3aNXhntJ/TAXAicddZZ9Mzrhb1kudKxYGWkxFa8FIvFxBVXXKE6jXYEBQUF+P0B+iWHdvihVf9kL5VV1Qe3PtJ0AYeEyWTitltvAXc91r1rVMcJO1N1EabaEn535ZVEw8yVzmrdunUYRPMNsnBoLXo9DPEjXcAhMnjwYM4991wsBzZirO083/GFux5H8ff07pPP1KlTVcfRjmLtmtXkJfqxm8Jzvq4OP4lWWLt2bXhOGAV0AYfQ9ddfT4/cXOKKliA8jarjhF4ggKPwa6wmA/Puvw+TKUxf2Vq7uVwuNm/eQv+k0I//thIC+ie5WbNqpR4HbqELOIRsNhsPPvAAFiFxFH4FgdiehG4tWYGhvow75swhJydHdRztKDZu3IjP72dASnjvUQxI9lJeWaUX6W+hCzjEcnNzmTPndgzOA1iLl8bs1DRT+TYsBwqYNm0a48ePVx1HO4a1a9eGdfy3Vf+U5nHgNWs6372Rw9EFHAYTJkzg8ssvx1K+FXNZ7C1IYnQewF78PSNGjuS6665THUdrg7Vr1oR1/LdVV4efJCt6kf4WuoDD5Morr2Ts2LHY9iyLqZtywl1PXOGXZHfpwrz779fjvlHA5XKxZUt4x39btc4HXrtmtR4HRhdw2BgMBu655x5yc3OJK/wa4apVHanj/F7idn6BzSh49JFH9AMXUWLTpk34/H76J6uZo94/2Ut5RSWlpaVKzh9JdAGHkcPh4NFHHiHObiF+xxfgi+JFyqXEvutbDI1V3H//feTm5qpOpLXRhg0bEEB+mB7AOFTrfGC9LoQu4LDLzs7m4YcewuB2Yi/6NmpvyllKN2CqLuLaa69l9OjRquNo7bBh/Xq6JwRwmNR87nWL8+MwC13A6AJWYtiwYVx77TWYqosxl25UHafdjHX7se5dxemnn86MGTNUx9Hawe/3s2lTAX0Swz/+28ogoE+imw3r9Y04XcCKTJ8+ndNOOw3b3pUYndEzFia8TcTt+pqcnBzmzJmDCNU2ClpIFBcX09jkok+i2jVKeif62F28h8bGTvCA0lHoAlZECMGcOXPIysrCUfRddCzaIyW2ov9gDPh48IEHcDgcqhNp7dS6MWao1/89ll6JPqSUbN26VWkO1XQBKxQXF8fv774b3E6sJStUxzkmU+VOTDXFXHXV78jLy1MdRzsO27dvx2qCLo7QbMDZVnktOyXv2LFDaQ7VdAErNnToUGZMn46lbEtED0UIrwvHnmUMHDSI6dOnq46jHaedO3eQE+fDoHjkKNEiSbLCzp3qdo6JBLqAI8CVV15JWlo6tj3LI3ZWhGXfakTAy5zbb8doNKqOox2nXYWFdI9TO/zQKsfhoXCnvgLWFLPZbFxzzdUYGiowVUbeJ6ShqRpL+VbOO+88evbsqTqOdpycTid1znq6OCJjUagujgB79+7t1E/E6QKOEBMmTKBvv37Y968FqXZ87lCWvWuw2+x6d4so17oTRaY9Mj6/Mu1+GhqbqKurUx1FGV3AEcJgMHDFr38NLiemql2q4xwkXHWYq4uYNm0qycnJquNoHVBeXg5AmjUyroDTbc3fCMrKyhQnUUcXcAQZM2YM3bv3wFa6IWLGgi2lGzGZzEybNk11FK2DampqAEiyRMbnVqKluYBra2NgXZTjpAs4ghgMBi6++CJEYxXG+gi4KvB7sFbt4KyzJpKWlqY6jdZBrUWXYImMIYgEc3OO1m8MnZEu4AhzxhlnYLXZMFdsUx0Fc9UupN/HOeecozqKFgQulwuDAHOEfNVbWybTuN1RvChVB0XIP4XWyuFwMOGMM7BUFyl/Os5SsZ3uPXIZOHCg0hxacPh8PowR9BVvFM1DIT5fZEyLUyGC/jm0VmeffTbS78VUU6wsg3A7MdSXMXnS2Xq9hxgRadO9Wj+tAoHIGBJRQRdwBBoyZAgpqWlKZ0OYW86t93eLHTabDa8fAhHSw25/cwPb7XbFSdRRWsBCiFeEEGVCiOhbkzGEDAYDE84Yj7luL/jULBtoqd5F//79yc7OVnJ+Lfhai661+FRz+XQBq74CfhWYpDhDRBo/fjwE/EqGIYSrFtFQyYQJE8J+bi10UlNTAajxREYB13ia6yclJUVxEnWUFrCUcglQpTJDpBowYABp6RmYq8M/DGGuKgLgtNNOC/u5tdDJzMwEoNIVGWt5VLqa6ycrK0txEnVUXwEfkxBiphBipRBiZeuTPJ1B6zCEqW5v2PeOs1TvYsDAgQe/YLXY0KVLFwDKmjr2Zd8j3keP+I7PXChrMmI0Gjr1HPOIL2Ap5YtSylFSylEZGRmq44TVhAkTIBDAXF0UtnMaGqsQjVVMPPPMsJ1TC4+srCziHHZ2O00dOs4v+zbyy74d38lid72RvJ49MZk6lieaRXwBd2Z9+/ala7dumCsLw3ZOU1UhBoOB008/PWzn1MJDCEHfvv0oqjerjoKUsLveSt9+/VVHUUoXcAQTQjDp7LMxOvcj3M7Qn1AGsFbtZNSoUQdv2GixZeCgQRQ7jTQpfvZhf6MBp0d2+od8VE9DexP4AegnhCgRQlypMk8kmjRpEkIIzBXbQ34uY+1ecDcwZcqUkJ9LU2PkyJH4JWytUXsVXFBtOZinM1M9C+JSKWW2lNIspcyRUr6sMk8kyszMZNSoX2Ct3B7ydYLN5VtJSExi7NixIT2Pps6gQYOwmM2sr1JbwOsrzWRnZXb6eeZ6CCIKnH/+eeBuwFQdujnBwl2PuXYP5045B7NZ/RihFhpWq5UTR5/Iqgq7sifiGn2CgmoLJ5+qpznqAo4CY8eOJSMzE0v55pCdw1y+BQGcd955ITuHFhnGjz+Dahdsr1Uz+2BNuRlfAH2jF13AUcFoNDJt6lSMdfsxNFYG/wR+H7aKbYwbN+7gXFEtdo0dOxar1cJ/Sq1Kzv/dARtZmRkMGDBAyfkjiS7gKDFlyhSsVhuW0oKgH9tcuQPpdXHxxRcH/dha5HE4HIwffwZLy2y4wjwborzJQEGVmf85ZwoGg64f/X8gSiQkJDBlyjmYqwoRnobgHVhKbGUF9O3XjyFDhgTvuFpEmzJlCi4fLC0L71XwN/usGIRg8uTJYT1vpNIFHEWmT5+OQGI+sCloxzTVFENTLZdecole97cTGTRoEL3yevJ5iSNs2w96/PDVfgdjxo7Vj7m30AUcRbKzsxk/fjy2iq3BWaZSSqylG8jq0oVTTjml48fTooYQghkXXcyeegObq8NzM+6HA1acHpgxY0ZYzhcNdAFHmUsuuQTp82Ap39LhYxnrD2CoL+PSSy7p1M/jd1ZnnHEGyUmJfLrHEfJzBSQsKnHQu1ceJ5xwQsjPFy10AUeZvn37csLw4VjLN0PA36FjWUo3Ep+QwKRJeknmzshqtTJ9xkWsrzRT7AztEpVrKszsrTdw2eW/1ENdP6ELOApdcvHFzQ9mdGDLIuGqxVRTzNQLLsBmswUxnRZNzj//fBx2G/+3O3S7UkgJHxfHkd0lS68xfQhdwFHoxBNPpHv3HtjKNnG8d1AsBzZhNJm44IILgpxOiyYJCQmcf8FUlpdZ2d8QmjooqDazs9bIpZddroe6DqELOAoZDAamT78Q0VCBoeE4Fqn3e7BW7uCM8eM79WLYWrOLLroIi8XMRyG4CpYSPihykJGepoe6DkMXcJSaOHEidrsDy4H2P55srtiB9HuZNm1aCJJp0SYlJYXzzr+AHw7YONAY3ErYXGNiW42JSy+7HIvFEtRjxwJdwFHK4XAwadLZmGuK2r1lkbVyO3365OtHQbWDLrnkEkym4F8Ff1gUR2pKMuecc05QjxsrdAFHscmTJ0PAj7mq7TtmGBorEQ2VnHPO/4QwmRZt0tLSOPe88/hPqa3De8a12lJtYnN189Wv1apm3YlIpws4iuXn59OzZx6Wyp1t/jPmih0YTSbOOOOMECbTotGll16K0WTi4yBdBX+420FKchLnnntuUI4Xi3QBRzEhBGedNRFDfRnCXX/sPyAllpoixoweTVJSUugDalElPT2dc86ZwrelNipcHauGHbUmCqrMXHzJpXqa41HoAo5yp556KgCm6t3H/FhDQzm4G/RcTO2ILrnkEhAGPi3uWGl+tNtOYkK8Xl/6GHQBR7mcnBx69szDXHPsAjZVF2MwGvWWQ9oRdenShYkTz2LJfjt1nuN7Ym1PvZG1FRYunD4DhyP0jzlHM13AMWDs2DEYG8rA7z3qx1mc+xg0aBAJCQlhSqZFo0svvRRvAD4vOb6r4E9227FZrUydOjXIyWKPLuAYMHLkSAgEMDpLj/gxwutCNFTwi1GjwphMi0a5ubmcNO4kvtjnwN3O5UaqXAaWlVmZcu65JCYmhiZgCwYlBQAACNVJREFUDNEFHAOGDBmC0WTC5Nx/xI9pLecRI0aEK5YWxWZcdBH1Hvi+ndsWfbHXikRw4YUXhihZbNEFHAOsViv5+fkYj/JYsrGhHKPJRN++fcOYTItWQ4cOpU+f3ize2/YF21sXXD/p5JM7/XbzbaULOEYMHjQIU2MlBAKHfb+xoZz8/Hz9OKjWJkIIpk27kL31Bra1cffk5WUW6j3oR9zbQRdwjOjfvz/S78Pgqvn5O6XE1FjJgP79wx9Mi1rjx4/HYbfx1d623Yz7ap+dnG5d9YLr7aC0gIUQk4QQW4UQO4QQd6rMEu169eoFgKGp+mfvE556pN9L7969wx1Li2J2u52zzp7EinIrDd6jT0nb12Bge62JKeeepxdcbwdlBSyEMALPApOBgcClQoiBqvJEux49emA0GjE0Vv3sfcaW1/Ly8sIdS4tykyZNwhuAleVHH7r6vrR5t+OJEyeGKVlsUHkFfCKwQ0pZKKX0AP8EzleYJ6qZTCa6duuGwVX7s/e1vpabmxvuWFqU69evHznduvL9gSMPQ0gJP5TZGTlqpF5fup1UFnA3YM9Pfl/S8tp/EULMFEKsFEKsLC8/jsXHO5HcHj0we5wABBypBBypAAhXHYlJycTHx6uMp0UhIQQTzpzIlmoTtUd4Mm6X00h5k2DChDPDnC76qSzgw/1r/mzCi5TyRSnlKCnlqIyMjDDEil45OTngqgMpcfcYg7vHGACM7lp6dM9RnE6LVqeccgoSWH2EYYhV5RYMBgPjxo0Lb7AYoLKAS4DuP/l9DrBPUZaYkJ2dDQE/wtv4X6+bPA106/azHy40rU169+5NdlYmqysOX8CrK20MGzpUP/l2HFQW8AogXwiRJ4SwAJcAHynME/W6dOkCgOGnS1MG/Eh3/cH3aVp7CSEYPXYcW2oseA+ZZl7lMrC33sAYvcDTcVFWwFJKHzAL+BewGXhbSlmgKk8saC1Z4XYefE14Gv7rfZp2PEaNGoXb37zO709trDIffL/Wfkr3iJZSfgp8qjJDLMnMzATA0FK6P/11VlaWkkxabBg+fDgGIdhcbWZAiu/g65trzCQnJhych661j34SLobY7Xbi4hMOXvVC80MY8GM5a9rxiIuLo1evPLbVmv/r9e11FoYMO0E/fHGclF4Ba8GXmZlBbeVPr4Cbb8jpGSRaRw0eMpQPPyjk6m/TD77W5JVcOHiwwlTRTRdwjMnKzKTwwPaDvxeeBuITEvSutFqHTZ8+HYvFQuAnCz6ZzWbOPvtshamimy7gGJORkYHBu+7g7w3eBtLT9dWv1nE5OTlcd911qmPEFD0GHGPS09ORniYING9lYPQ2kZWpC1jTIpEu4BiTnt48Pie8TQAYfI0HX9M0LbLoAo4xBwvY0wAygHTrAta0SKULOMa0rkZl8DYdvApOTU1VGUnTtCPQBRxjWgtYeBsPFrBeIlDTIpMu4BiTlJSEwWBoKeDmOcD6CljTIpMu4BhjMBhISkpGeF0Y9BWwpkU0XcAxKDU19b/GgJOTkxUn0jTtcHQBx6DU1BQMPhfC68LucOin4DQtQukCjkEpKSkY/S6Er0lf/WpaBNMFHIOSk5PB24TwukhJSVEdR9O0I9AFHIOSkpKQfh9GXyPJSUmq42iadgS6gGNQ695coqlW79OlaRFMF3AMSkhIOPhrXcDa/2/vfkKsKuMwjn8fzBp0lkaSFUZkJf2DRkGIQGhhq1AIizZC1KYWrSJq075Nm0JclNFCqYVUFGgRNQRBTlSomWCRNESl1Croj8OvhaNM403Srr533vl+Vue+95xzn4HLMy8v55yr0WUBd2huAY+PjzdMIulcLOAOzS1dC1gaXRZwh5YvX35m2wKWRpcF3KFly5YN3JY0WizgDlnA0sJgAXdo7q3HY2NjDZNIOhcLuENJzmxbwNLosoA7dfWqVYCPopRGWZOfpU/yAPAccAuwvqqmWuTo2as7dzIzM+MMWBphrWbAB4EtwGSjz+/e0qVLLV9pxDWZAVfVYfjnWqUkLTYjvwac5LEkU0mmjh8/3jqOJA3NRZsBJ3kfWDngrWer6s3/ep6q2gHsAJiYmKghxZOk5i5aAVfVvRfr3JLUg5FfgpCkXjUp4CSbk0wDG4B3kuxtkUOSWmp1FcQeYE+Lz5akUeEShCQ1YgFLUiMWsCQ1YgFLUiOpWjj3NiQ5DhxrnWMBWQGcaB1CXfK7dX5OVNWm+YMLqoB1fpJMVdVE6xzqj9+t4XAJQpIasYAlqRELuG87WgdQt/xuDYFrwJLUiDNgSWrEApakRizgDiXZlORIkqNJnm6dR/1I8nKSn5McbJ2lBxZwZ5IsAV4E7gPWAg8lWds2lTqyEzjrhgJdGAu4P+uBo1X1bVX9CewG7m+cSZ2oqkngl9Y5emEB92cV8P2c19OzY5JGjAXcnwwY81pDaQRZwP2ZBq6d8/oa4IdGWSSdgwXcn/3AjUmuT3I58CDwVuNMkgawgDtTVSeBJ4C9wGHg9ao61DaVepFkF/AJcFOS6SSPtM60kHkrsiQ14gxYkhqxgCWpEQtYkhqxgCWpEQtYkhqxgNWtJCuT7E7yTZKvkrybZM2/7LvaJ3zpUrOA1aUkAfYAH1bVDVW1FngGuGpI579sGOfR4mYBq1cbgb+qavvpgar6Avg4yfNJDiY5kGTr/AOTjCV5Zfb9z5NsnB3fluSNJG8D+y7ZX6Ju+V9cvboV+GzA+BbgTuAOYAWwP8nkvH0eB6iq25LcDOybs3SxAbi9qnwko/43Z8BabO4GdlXVTFX9BHwErBuwz2sAVfU1cAw4XcDvWb4aFgtYvToE3DVgfNDjOs9nn98uLI50NgtYvfoAuCLJo6cHkqwDfgW2JlmS5ErgHuDTecdOAg/PHrMGuA44cklSa1FxDVhdqqpKshl4YfaHSX8HvgOeBMaBLzn1oPqnqurHJKvnHP4SsD3JAeAksK2q/jh1YYU0PD4NTZIacQlCkhqxgCWpEQtYkhqxgCWpEQtYkhqxgCWpEQtYkhr5G6JxkWMjnxxCAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
],
"source": [
"sns.catplot(x=\"Color\", y=\"Item Size\",\n",
" kind=\"violin\", data=new_pumpkins)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"Selected_features = ['Origin','Item Size','Variety','City Name','Package']\n",
"\n",
"X = new_pumpkins[Selected_features]\n",
"y = new_pumpkins['Color']\n",
"\n",
"\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" precision recall f1-score support\n",
"\n",
" 0 0.83 0.98 0.90 166\n",
" 1 0.00 0.00 0.00 33\n",
"\n",
" accuracy 0.81 199\n",
" macro avg 0.42 0.49 0.45 199\n",
"weighted avg 0.69 0.81 0.75 199\n",
"\n",
"Predicted labels: [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 1 0 0 0 0 0 0 0 0]\n",
"Accuracy: 0.8140703517587939\n",
"/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
" FutureWarning)\n"
]
}
],
"source": [
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import accuracy_score, classification_report \n",
"from sklearn.linear_model import LogisticRegression\n",
"model = LogisticRegression()\n",
"model.fit(X_train, y_train)\n",
"predictions = model.predict(X_test)\n",
"\n",
"print(classification_report(y_test, predictions))\n",
"print('Predicted labels: ', predictions)\n",
"print('Accuracy: ', accuracy_score(y_test, predictions))\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f95892612b0>"
]
},
"metadata": {},
"execution_count": 16
},
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 432x288 with 1 Axes>",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"248.518125pt\" version=\"1.1\" viewBox=\"0 0 372.103125 248.518125\" width=\"372.103125pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <defs>\n <style type=\"text/css\">\n*{stroke-linecap:butt;stroke-linejoin:round;}\n </style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 248.518125 \nL 372.103125 248.518125 \nL 372.103125 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 30.103125 224.64 \nL 364.903125 224.64 \nL 364.903125 7.2 \nL 30.103125 7.2 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g id=\"PolyCollection_1\">\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 61.82295 202.776198 \nL 61.82295 214.756364 \nL 69.157013 190.796033 \nL 76.491077 178.815868 \nL 76.491077 142.875372 \nL 76.491077 142.875372 \nL 69.157013 178.815868 \nL 61.82295 202.776198 \nz\n\" style=\"fill:#ff7f0e;fill-opacity:0.2;stroke:#ff7f0e;stroke-opacity:0.2;\"/>\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 89.325688 124.905124 \nL 89.325688 130.895207 \nL 92.99272 124.905124 \nL 92.99272 118.915041 \nL 92.99272 118.915041 \nL 89.325688 124.905124 \nz\n\" style=\"fill:#ff7f0e;fill-opacity:0.2;stroke:#ff7f0e;stroke-opacity:0.2;\"/>\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 124.16249 82.974545 \nL 124.16249 88.964628 \nL 124.16249 82.974545 \nL 124.16249 82.974545 \nz\n\" style=\"fill:#ff7f0e;fill-opacity:0.2;stroke:#ff7f0e;stroke-opacity:0.2;\"/>\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 146.16468 76.984463 \nL 146.16468 82.974545 \nL 151.665228 76.984463 \nL 151.665228 65.004298 \nL 151.665228 65.004298 \nL 146.16468 76.984463 \nz\n\" style=\"fill:#ff7f0e;fill-opacity:0.2;stroke:#ff7f0e;stroke-opacity:0.2;\"/>\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 184.668514 53.024132 \nL 184.668514 65.004298 \nL 184.668514 53.024132 \nL 184.668514 53.024132 \nz\n\" style=\"fill:#ff7f0e;fill-opacity:0.2;stroke:#ff7f0e;stroke-opacity:0.2;\"/>\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 232.339927 41.043967 \nL 232.339927 53.024132 \nL 232.339927 41.043967 \nL 232.339927 41.043967 \nz\n\" style=\"fill:#ff7f0e;fill-opacity:0.2;stroke:#ff7f0e;stroke-opacity:0.2;\"/>\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 314.848141 35.053884 \nL 314.848141 41.043967 \nL 314.848141 35.053884 \nL 314.848141 35.053884 \nz\n\" style=\"fill:#ff7f0e;fill-opacity:0.2;stroke:#ff7f0e;stroke-opacity:0.2;\"/>\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 333.1833 23.073719 \nL 333.1833 35.053884 \nL 333.1833 23.073719 \nL 333.1833 23.073719 \nz\n\" style=\"fill:#ff7f0e;fill-opacity:0.2;stroke:#ff7f0e;stroke-opacity:0.2;\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"mb4db33e09d\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"45.321307\" xlink:href=\"#mb4db33e09d\" y=\"224.64\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0.0 -->\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"/>\n </defs>\n <g transform=\"translate(37.369744 239.238437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"106.194034\" xlink:href=\"#mb4db33e09d\" y=\"224.64\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 0.2 -->\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n </defs>\n <g transform=\"translate(98.242472 239.238437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_3\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"167.066761\" xlink:href=\"#mb4db33e09d\" y=\"224.64\"/>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 0.4 -->\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <g transform=\"translate(159.115199 239.238437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"227.939489\" xlink:href=\"#mb4db33e09d\" y=\"224.64\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 0.6 -->\n <defs>\n <path d=\"M 33.015625 40.375 \nQ 26.375 40.375 22.484375 35.828125 \nQ 18.609375 31.296875 18.609375 23.390625 \nQ 18.609375 15.53125 22.484375 10.953125 \nQ 26.375 6.390625 33.015625 6.390625 \nQ 39.65625 6.390625 43.53125 10.953125 \nQ 47.40625 15.53125 47.40625 23.390625 \nQ 47.40625 31.296875 43.53125 35.828125 \nQ 39.65625 40.375 33.015625 40.375 \nz\nM 52.59375 71.296875 \nL 52.59375 62.3125 \nQ 48.875 64.0625 45.09375 64.984375 \nQ 41.3125 65.921875 37.59375 65.921875 \nQ 27.828125 65.921875 22.671875 59.328125 \nQ 17.53125 52.734375 16.796875 39.40625 \nQ 19.671875 43.65625 24.015625 45.921875 \nQ 28.375 48.1875 33.59375 48.1875 \nQ 44.578125 48.1875 50.953125 41.515625 \nQ 57.328125 34.859375 57.328125 23.390625 \nQ 57.328125 12.15625 50.6875 5.359375 \nQ 44.046875 -1.421875 33.015625 -1.421875 \nQ 20.359375 -1.421875 13.671875 8.265625 \nQ 6.984375 17.96875 6.984375 36.375 \nQ 6.984375 53.65625 15.1875 63.9375 \nQ 23.390625 74.21875 37.203125 74.21875 \nQ 40.921875 74.21875 44.703125 73.484375 \nQ 48.484375 72.75 52.59375 71.296875 \nz\n\" id=\"DejaVuSans-54\"/>\n </defs>\n <g transform=\"translate(219.987926 239.238437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-54\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"288.812216\" xlink:href=\"#mb4db33e09d\" y=\"224.64\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 0.8 -->\n <defs>\n <path d=\"M 31.78125 34.625 \nQ 24.75 34.625 20.71875 30.859375 \nQ 16.703125 27.09375 16.703125 20.515625 \nQ 16.703125 13.921875 20.71875 10.15625 \nQ 24.75 6.390625 31.78125 6.390625 \nQ 38.8125 6.390625 42.859375 10.171875 \nQ 46.921875 13.96875 46.921875 20.515625 \nQ 46.921875 27.09375 42.890625 30.859375 \nQ 38.875 34.625 31.78125 34.625 \nz\nM 21.921875 38.8125 \nQ 15.578125 40.375 12.03125 44.71875 \nQ 8.5 49.078125 8.5 55.328125 \nQ 8.5 64.0625 14.71875 69.140625 \nQ 20.953125 74.21875 31.78125 74.21875 \nQ 42.671875 74.21875 48.875 69.140625 \nQ 55.078125 64.0625 55.078125 55.328125 \nQ 55.078125 49.078125 51.53125 44.71875 \nQ 48 40.375 41.703125 38.8125 \nQ 48.828125 37.15625 52.796875 32.3125 \nQ 56.78125 27.484375 56.78125 20.515625 \nQ 56.78125 9.90625 50.3125 4.234375 \nQ 43.84375 -1.421875 31.78125 -1.421875 \nQ 19.734375 -1.421875 13.25 4.234375 \nQ 6.78125 9.90625 6.78125 20.515625 \nQ 6.78125 27.484375 10.78125 32.3125 \nQ 14.796875 37.15625 21.921875 38.8125 \nz\nM 18.3125 54.390625 \nQ 18.3125 48.734375 21.84375 45.5625 \nQ 25.390625 42.390625 31.78125 42.390625 \nQ 38.140625 42.390625 41.71875 45.5625 \nQ 45.3125 48.734375 45.3125 54.390625 \nQ 45.3125 60.0625 41.71875 63.234375 \nQ 38.140625 66.40625 31.78125 66.40625 \nQ 25.390625 66.40625 21.84375 63.234375 \nQ 18.3125 60.0625 18.3125 54.390625 \nz\n\" id=\"DejaVuSans-56\"/>\n </defs>\n <g transform=\"translate(280.860653 239.238437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-56\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_6\">\n <g id=\"line2d_6\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"349.684943\" xlink:href=\"#mb4db33e09d\" y=\"224.64\"/>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 1.0 -->\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n </defs>\n <g transform=\"translate(341.733381 239.238437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_7\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"m03bb2575d9\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m03bb2575d9\" y=\"214.756364\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 0.0 -->\n <g transform=\"translate(7.2 218.555582)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m03bb2575d9\" y=\"175.221818\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 0.2 -->\n <g transform=\"translate(7.2 179.021037)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m03bb2575d9\" y=\"135.687273\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 0.4 -->\n <g transform=\"translate(7.2 139.486491)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m03bb2575d9\" y=\"96.152727\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- 0.6 -->\n <g transform=\"translate(7.2 99.951946)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-54\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_11\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m03bb2575d9\" y=\"56.618182\"/>\n </g>\n </g>\n <g id=\"text_11\">\n <!-- 0.8 -->\n <g transform=\"translate(7.2 60.417401)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-56\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_6\">\n <g id=\"line2d_12\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"30.103125\" xlink:href=\"#m03bb2575d9\" y=\"17.083636\"/>\n </g>\n </g>\n <g id=\"text_12\">\n <!-- 1.0 -->\n <g transform=\"translate(7.2 20.882855)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"line2d_13\">\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 45.321307 214.756364 \nL 349.684943 17.083636 \n\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_14\">\n <path clip-path=\"url(#pd4614883dc)\" d=\"M 45.321307 214.756364 \nL 48.988339 214.756364 \nL 52.65537 214.756364 \nL 54.488886 214.756364 \nL 58.155918 214.756364 \nL 61.82295 208.766281 \nL 69.157013 184.80595 \nL 76.491077 160.84562 \nL 78.324593 142.875372 \nL 81.991624 142.875372 \nL 83.82514 142.875372 \nL 87.492172 130.895207 \nL 89.325688 127.900165 \nL 92.99272 121.910083 \nL 98.493267 118.915041 \nL 102.160299 118.915041 \nL 113.161394 118.915041 \nL 120.495458 106.934876 \nL 124.16249 85.969587 \nL 127.829521 82.974545 \nL 129.663037 82.974545 \nL 135.163585 82.974545 \nL 146.16468 79.979504 \nL 151.665228 70.99438 \nL 160.832807 65.004298 \nL 171.833903 65.004298 \nL 181.001482 65.004298 \nL 184.668514 59.014215 \nL 188.335546 53.024132 \nL 190.169061 53.024132 \nL 195.669609 53.024132 \nL 204.837189 53.024132 \nL 210.337736 53.024132 \nL 214.004768 53.024132 \nL 219.505316 53.024132 \nL 228.672895 53.024132 \nL 232.339927 47.03405 \nL 236.006959 41.043967 \nL 243.341022 41.043967 \nL 247.008054 41.043967 \nL 250.675086 41.043967 \nL 258.009149 41.043967 \nL 261.676181 41.043967 \nL 263.509697 41.043967 \nL 274.510792 41.043967 \nL 281.844856 41.043967 \nL 287.345403 41.043967 \nL 296.512983 41.043967 \nL 307.514078 41.043967 \nL 314.848141 38.048926 \nL 316.681657 35.053884 \nL 322.182205 35.053884 \nL 325.849237 35.053884 \nL 333.1833 29.063802 \nL 335.016816 23.073719 \nL 338.683848 17.083636 \nL 342.35088 17.083636 \nL 344.184396 17.083636 \nL 347.851427 17.083636 \nL 349.684943 17.083636 \n\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 30.103125 224.64 \nL 30.103125 7.2 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 364.903125 224.64 \nL 364.903125 7.2 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 30.103125 224.64 \nL 364.903125 224.64 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 30.103125 7.2 \nL 364.903125 7.2 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"pd4614883dc\">\n <rect height=\"217.44\" width=\"334.8\" x=\"30.103125\" y=\"7.2\"/>\n </clipPath>\n </defs>\n</svg>\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xW5d3H8c+VkE0SCCFAEkJYYYYZluJAQQEVRLB1D2qRtvbp08cKuOqs4uhwU7RYrba2kgjIVARRGYKoZEEgBEhCIJvscY/r+ePEGjGQO3An5x6/9+vFK/fJObnzOwS+HM65rt+ltNYIIYRwfz5mFyCEEMI5JNCFEMJDSKALIYSHkEAXQggPIYEuhBAeopNZ3zgyMlLHx8eb9e2FEMIt7d27t0Rr3b2lfaYFenx8PF999ZVZ314IIdySUurYmfbJLRchhPAQEuhCCOEhJNCFEMJDSKALIYSHkEAXQggP0WqgK6VWKKWKlFLpZ9ivlFIvKqWylVKpSqkxzi9TCCFEaxy5Qv87MP0s+2cAA5t+LQBeO/+yhBBCtFWr49C11p8ppeLPcshs4G1t9OHdpZTqopTqpbU+4aQahRDCtWV8AIWZrR5m05qvc8uJGHwJ/SfNcnoZzphYFAPkNdvOb/rcjwJdKbUA4yqeuLg4J3xrIYQwWc6n8P4dTRvqjIfppr1jNXzZ2Oiygd7SGbS4aobWejmwHCApKUlW1hBCuDdrA6y7F7r2hV/uAr/AHx1Sb7Hx0pZDLNuWQ9dgf56YPYwZib3apRxnBHo+0LvZdixQ4IT3FUII17b9RSjNhluSWwzzr46WsSg5lZziGq4fG8tDVw0lPNiv3cpxRqCvAe5RSr0HTAAq5P65EMLjlR2Bz5+HodfCgKk/2FXdYOW5jQd4e9cxosODeHv+eC5OaLGfllO1GuhKqX8BlwKRSql84BHAD0BrvQxYD8wEsoFa4M72KlYIIVyC1rBhEfh0gulP/2DXtoPFPJCSRkFFHbdPiue+KwcREtAxfRAdGeVyYyv7NfArp1UkhBCu7sBaOPQRXPkUhEUDcKq2kSfW7if563z6dw/h/bsnkRQf0aFlmdY+Vwgh3FLlCdj1GnQbAOPvBmBD2gkeXp1BeW0j90wZwD2XDSDQz7fDS5NAF0KItijJgtydcNG9FNVY+f3qfWzMOMnwmDDemj+OYdHhppUmgS6EEG2Ruwu0nY/tY7n3T9uot9pZPH0wP7+oL518zW2PJYEuhBBtUJv9BfW+3Viw2cq4+EiWzk2kX/fOZpcFSKALIYRDbHbNu19kMS9vNx9xMY/PTuTmCX3w8Tnz7NCOJoEuhBCtyC6qYnFyGhF5H3ObfwNTZ99B5Oh4s8v6EQl0IYQ4A4vNzl+3HebFT7KZ4f81zwctQwd2J3L41Na/2AQS6EII0YK0/AoWJaey/0QFL8Zs4ZrSFaiokTDlgRan+bsCCXQhhGim3mLjL5sP8frnOUQHa3YOfJdeeesh8XqY9RIUHzC7xDOSQBdCiCZf5pSyJCWNIyU13D3Cn0UVj+Gblw5TH4MLfwPKdR6AtkQCXQjh9arqLTy7MYt/7DpG74gg1szyZcQXC8HWCDf9BxKuMLtEh0igCyG8R+p/oPCHyyMfK6vl84PFxDTYeLdPOONjA/Db/DZ07QM3/Au6J5hUbNtJoAshvEPqfyDl5+DrD8oHDVhtdnrYNdcrhV+AwqdUQSkw8Aq49lUI6vLj9+ncs6Mrd5gEuhDC81nqYPMj0G0geuEXrNtfxiOrM6hosPDLKQP41ZT++HRysJlWWPusNuQMEuhCCM9WXwGbH4PKAsrnvc+if6XzcWYhI2LDeeeuCQzpFWZ2hU4jgS6E8EwF38BXKyBtJVhqOdxjOteu1DRai3lg5mDmX2h+My1nk0AXQniOxlpITzaCvOBr8AumeuC1PF18Ae8ei2BC3zCemTuC+MgQsyttFxLoQriLgm8h7X2zq3BdDZWQudq4xdJ9MPbpz/Bu3SSe2nICXx/FH6aEcOO0iS7VTMvZJNCFcGWVJ4yHcPUV8M+fQG0p+AaYXZVr8ukEA6dB0nwOBiayKDmNb/PyuWxwFH+YM5xe6hR4cJiDBLoQrq36pBHoW56E6iJYsBWiR5tdlctqtNp57dPDvLz1C0ID/XjhhlHMGhmNUgoIMru8dieBLoSrK/gG9rwB4+6SMD+LfXmnWJycyoGTVcwaGc0j1wylW2fv+t+MBLoQrsxug/X3QXAkXPaQ2dW4pLpGG3/efJA3Ps8hKjSQN25LYurQHmaXZQoJdCFc2YG1xmiN695oedail9t5uJT7U1I5WlrLjePjuH/mYMIC/cwuyzQS6EK4quoi2L0c+l4MifPMrsalVNZbWLrhAP/8Mpc+3YL5588ncEH/SLPLMp0EuhCu6qOHwdoAM//o8m1bO9In+wt58IN0iqrqWXBxP347NYEgfwen7Xs4CXQhXNGRzyH1PRh1i1t1+2tPpdUNPPZhJmv2FTCoRyjLbh3LqN5yG6o5CXQhXI21EdbdC13iYMwtZldjOq01a/YV8NiHmVTVW/jt1AR+cWl//Dt51rR9Z5BAF8LV7HwJSrKMhRU6uebalR3lREUdD32QzicHihjZuwvPzh3BoJ6hZpflsiTQhXAl5Udh23Mw+GpIuNIYg+6F7HbNe3vyeHr9fix2Ow9dNYQ7L+yLr4fP9DxfEujCe9SWwc5XoLHa7ErOLO9LUD4w4xmzKzHN0ZIalqSksiunjAv6d+Pp6xLp080zm2k5mwS68Hzf9UPZsMhopRrowv2vlS/MWArhsca2C6+O42xWm50V24/wx48O4u/rw9LrEvnpuN5N0/aFIxwKdKXUdOAFwBd4Q2u99LT94cA7QFzTez6vtX7TybUKcW6qTxr3pNPeh0sWw5QHzK7IcS68Oo4zHThZyeKVqezLr2DqkB48ee1weoZ79/ODc9FqoCulfIFXgGlAPrBHKbVGa53Z7LBfAZla62uUUt2BLKXUu1rrxnapWoi2sDXCut9B13iY/FuzqxHNNFhtvLL1MK9uzSY8yI+XbhzN1SN6yVX5OXLkCn08kK21zgFQSr0HzAaaB7oGQpXxU+gMlAFWJ9cqxLnZ928oPQQ3J4Of53fccxff5JazODmVg4XVzBkdw8NXDyUixN/sstyaI4EeA+Q1284HJpx2zMvAGqAACAV+qrW2n/5GSqkFwAKAuLi4c6lXiLYpOwLf/AOGzoaBU82uRgC1jVb++NFBVmw/Qs+wQFbckcRlg72zmZazORLoLf3fR5+2fSXwLXAZ0B/4WCn1uda68gdfpPVyYDlAUlLS6e8hhHNpbTwI9fGFK582uxoB7MguYUlKGrlltdwyMY7F0wcT6sXNtJzNkUDPB3o3247FuBJv7k5gqdZaA9lKqSPAYGC3U6oU4lwcWAuHPoKJv4DwGLOr8WoVdRaeXr+f9/bk0TcyhH8vmMiEft3MLsvjOBLoe4CBSqm+wHHgBuCm047JBS4HPldK9QAGATnOLFSINmmohg2LIWoYDJ9rdjVe7aOMkzy0Kp2S6gbuvsRophXoJ8202kOrga61tiql7gE2YQxbXKG1zlBKLWzavwx4Avi7UioN4xbNYq11STvWLcTZbXsGKo/DvBXGWpOiw5VUN/DomgzWpp5gcM9Q3rg9iRGx0kyrPTn0J11rvR5Yf9rnljV7XQBc4dzShDhHhZmw61UYfSvETfTa6fNm0Vqz6tvjPPZhJrUNNu6dlsDCS/vj5yvNtNqbXLoIz2K3w7r/g4AwmPa42dV4nYJTdTz4QRpbs4oZHWc00xrYQ5ppdRQJdNF+LPXg6w8+Z7gys1lh75tQtN9537O2BHJ3wqyXITjCee8rzspu17y7O5el6/dj1/DINUO5bVK8NNPqYBLoon3Y7VCYYSzOENDCFVphBqz+lXE7JCjCaEjlLMPnwaibv9/2on4oZsgprmZJchq7j5YxeUAkT1+XSO+IYLPL8koS6KJ91JVBTdGPV9uxNsIXf4LPnofAcOOh5bDr2neJNS/ph9LRrDY7b3xxhD9/fJCATj48O28E14+NlWn7JpJAF86nNZQeBrvth58//jWsvgeKMiDxepj+DITIWGR3lFlQyaLkfaQfr+TKYT14YvZwosKkmZbZJNCF89VXQEPl96vtWOrg06dhx0vQuQfc+B4MmmFujeKcNFhtvLwlm9c+PUyXYD9evXkMM4b3lKtyFyGBLpyv/Ch0CjBur+TtNqbfl2bDmNtg2hMQJGOR3dHeY2UsTk4ju6iauWNieeiqIXSVZlouRQJdOFdDtXHvPKgb7H4d9n8IXXrDraug/xSzqxPnoKbBynObsnhr51Giw4N4a/54LknobnZZogUS6MK5TuWBjx8c2Qb718DIG2Hm8xDQ2ezKxDn4/FAx96ekkV9ex+2T+nDf9MF0DpDYcFXykxHOY6mHynzjdsvOl6FrX5j+tIS5G6qotfDkukze35tPv+4hvL9wEuPiZVy/q5NAF85TedwYT773LWNB5ot+J31U3NDG9JM8vDqdsppGfnlpf/7n8oHSTMtNyN824Rw2i/EwtKYIMlJgyNUQmdDqlwnXUVRVz6NrMlifdpKhvcJ4845xDI8JN7ss0QYS6MI5qgrBboXtLxp9VMYvMEa5CJentSb56+M8sTaTOouN+64cxIKL+0kzLTckgS7On90GZYfh2E4oyoRL7zem+1tLza5MtCK/vJYHPkjns4PFJPXpytK5IxgQJc883JUEujh/ljqoKYGv3oBeI2HgFdBYYzTm8g0wuzrRArtd849dx3hm4wEAHps1jFsn9sFHmmm5NQl04RzfvAONtXDh/4K13rinHjsOOsnEE1dzuLiaxStT+epYORcndOepOcOJ7SrNtDyBBLo4d1pDcRZkroKcLcaY87BoY3JR73EyXNHFWGx2ln+WwwufHCLIz5fnrx/J3DExMm3fg0igi7apKYGcT+HwVji8Baqa1guPTDACvb4SYpOMTorCZaQfr2DRylQyT1QyM7Enj84aRlSoNNPyNBLo4uysDZC7ywjvnK1wYp/x+cAu0O8S6H8ZxE6AU7nGsb1GysISLqTeYuOFTw6x/LMcIkL8WXbLGKYPl3bCnkoC3VtpDXvegIJvz3xM9Uk4uh2sdcYEodjxMOUhI8SjR4FP02SThmpjhmj3IRDao2PqF63ac7SMxStTySmp4fqxsTx01VDCg/3MLku0Iwl0b1N5AgLDYNUvIHO1sZrPmWZzBoTCmFuNAI+f3PLKQ2C0ye01EjpHtV/dwmHVDVae3XiAt3ceI7ZrEP/42XguGijNtLyBBLq3OfENbPmDMV78iidh0j3nv1qQbycJcxex7WAxD6SkUVBRxx0XxHPflYMIkWZaXkN+0t7kZDp8sBA0cPP7MGCq2RUJJzlV28jjazNJ+fo4/buHsHLhJMb2kWcZ3kYC3Zt8/bbx4HLhdogcYHY1wgm01mxIP8nvV6dzqtbCPVMGcM9lA6SZlpeSQPcmRZkQ0VfC3EMUVdbz8Op0NmUUMjwmjLfmj2dYtAwX9WYS6N5CayjMgD6TzK5EnCetNe/vzefJtZk0WO0smTGYuyb3pZM00/J6EujeoroQ6sqg50izKxHnIa+slvtT0vgiu4Tx8REsnZtIv+4yI1cYJNC9RVGm8VGu0N2Sza55e+dRnt2YhY+CJ64dzs3j46SZlvgBCXRvUdgU6FFDza1DtNmhwioWJ6fyde4pLh3UnT/MSSSmS5DZZQkXJIHuLYoyISQKQiLNrkQ4yGKzs+zTw7y0JZuQAF/+/NORXDtKmmmJM3Mo0JVS04EXAF/gDa310haOuRT4C+AHlGitL3FineJ8FWZAD7k6dxdp+RXct3IfB05WcfWIXjw6axiRnaW3vDi7VgNdKeULvAJMA/KBPUqpNVrrzGbHdAFeBaZrrXOVUjJt0JXYbUab26T5ZlciWlFvsfHnzQd5/bMcIjsHsPzWsVwxrKfZZQk34cgV+nggW2udA6CUeg+YDWQ2O+YmIEVrnQugtS5ydqHiPJQfNRpsRQ0xuxJxFl/mlLIkJY0jJTXcMK43988cQniQNNMSjnMk0GOAvGbb+cCE045JAPyUUp8CocALWuu3T38jpdQCYAFAXFzcudQrzkVhhvFRbrm4pKp6C89sPMA7u3LpHRHEu3dN4MIB8qxDtJ0jgd7SExjdwvuMBS4HgoCdSqldWuuDP/girZcDywGSkpJOfw/RXooyAWW0txUuZeuBIh74II2TlfX8bHJf7r0igWB/Gasgzo0jf3Lygd7NtmOBghaOKdFa1wA1SqnPgJHAQYT5vpvy7y/rRrqKsppGHv8wg1XfFjAwqjPJv7iAMXFdzS5LuDlHAn0PMFAp1Rc4DtyAcc+8udXAy0qpToA/xi2ZPzuzUHEeCjNl/LmL0FqzNvUEj67JoKLOwm8uH8gvp/QnoJM00xLnr9VA11pblVL3AJswhi2u0FpnKKUWNu1fprXer5TaCKQCdoyhjentWbhwkKUOyg7DsDlmV+L1CivrefCDdDbvL2REbDjv/nwCg3uGmV2W8CAO3azTWq8H1p/2uWWnbT8HPOe80oRTFGeBtssDURNprfn3njz+sH4/jVY7D84cwp0XxkszLeF08vTF0xXtNz5GDTO3Di91rLSG+1PS2HG4lAl9I3hm7gjiI0PMLkt4KAl0T1eUAb4BENHP7Eq8is2ueXP7EZ7/KItOPj48NSeRG8b1lmZaol1JoHu6wkzonmCs+yk6RNbJKhYlp7Iv7xSXD47iyTnD6RUuzbRE+5O/5Z6uKBP6SludjtBotfPqp9m8sjWb0EA/XrhhFLNGRkszLdFhJNA9WW0ZVJ2QB6IdYF/eKRatTCWrsIrZo6L5/dVD6SbNtEQHk0D3ZF80TQWQK/R2U9do408fZ/G3L44QFRrIG7clMXVoD7PLEl5KAt1TFWbCrldh9K0QPcrsajzSjsMl3J+SxrHSWm6aEMeSGYMJC5RmWsI8EuieSGtYdy8EhMLUx8yuxuNU1lt4ev0B/rU7lz7dgvnnzydwQX9ppiXMJ4Huib79J+TugFkvQUg3s6vxKJszC3lwVRrFVQ0suLgfv52aQJC/TNsXrkEC3dPUlsHHD0PvCTDqFrOr8Ril1Q089mEma/YVMLhnKMtvTWJk7y5mlyXED0ige5pPHoO6U3DVn8BHppafL601a/YV8OiaDKobrPx2agK/uLQ//p3k91a4Hgl0T5K3B/b+HSbdAz2Hm12N2ztRUcdDH6TzyYEiRvXuwrPzRpDQI9TssoQ4Iwl0T2GzwtrfQmg0XLrE7Grcmt2u+deeXJ5efwCr3c5DVw3hzgv74ivT9oWLk0D3FHteh8I0+MnbxugWcU6OlNSwJDmVL4+UcUH/biy9bgRx3WRhEOEeJNA9QeUJ2PIHGDAVhswyuxq3ZLXZWbH9CH/86CD+nXx4Zm4iP0nqLdP2hVuRQPcEm+4HuwVmPgcSQG22/0Qli5NTSc2vYNrQHjx57XB6hAWaXZYQbSaB3tGsjaBt4Nes+17Bt/DlX6Gxqu3vZ7PAwY0w5UFpkdtGDVYbr2w9zKtbswkP8uPlm0ZzVWIvuSoXbksCvaMVH4CAMIiIh/KjsOVJSHsfAsMhLObc3nPobLjwN86s0uN9nVvO4pWpHCqqZs7oGH5/9VC6hvibXZYQ50UCvSPVlkHZEegSBxuXGw8ylS9cdK8RyIHhZlfo8WobrTy/6SBv7jhCz7BA3rxjHFMGR5ldlhBOIYHeUWxWo2HW8a9g9S/BUgujboYpD0BYtNnVeYXt2SUsSUklr6yOWyf2YdH0QYRKMy3hQSTQO8qpPKjMh93LodsAmPsGRA0xuyqvUFFn4al1+/n3V3n0jQzh3wsmMqGf9LgRnkcCvSM01kBpNnz7Lmg7TF8qYd5BPso4yUOr0imtaWThJf3536kDCfSTZlrCM0mgd4Tig8aknyOfGbdZwmPNrsjjFVc18OiHGaxLPcGQXmH87fZxJMbKMwrh2STQ25vNCpXHYffrEN4bBl0lMznbkdaaD745zuNrM6ltsPG7KxK4+5L++PlKMy3h+STQO0LGB1BVANOegPAYCJb7t+3h+Kk6HvwgjU+zihkTZzTTGhAl/3gK7yGB3t5KsyFzFfS/zLhvHpkgszmdzG7XvPvlMZZuOIBdwyPXDOW2SfHSTEt4HQn09qQ1bFgEvv4w8kYjzP2l0ZMz5RRXsyQ5jd1Hy7hoYCRPzUmkd4T8HgvvJIHentKT4cg2GDvfmAUqD0Odxmqz8/rnR/jz5oMEdvLhuXkjmDc2VqbtC68mgd5eGmtg04PQayQMnWXcbvGR4XLOkFFQweLkVNKPV3LlsB48MXs4UdJMSwgJ9HZzcBNUn4Tr/go9hkNwhNkVub16i42Xthxi2bYcugb789rNY5iR2MvssoRwGRLo7SVrAwRFQPxFcmXuBHuPlbFoZSqHi2uYOyaWh68eQpdgaaYlRHMODc5VSk1XSmUppbKVUmdc30wpNU4pZVNKzXNeiW7IZoFDmyBhuoT5eappsPLomgzmLdtJvcXOW/PH88efjJQwF6IFrV6hK6V8gVeAaUA+sEcptUZrndnCcc8Am9qjULeSuxPqK2DwTLMrcWufHSzm/pQ0CirquG1iH+6bPpjOAfKfSiHOxJG/HeOBbK11DoBS6j1gNpB52nG/BpKBcU6t0B1lbQDfAOg3xexK3FJFrYUn1mWycm8+/bqH8J+7JzEuXp5BCNEaRwI9Bshrtp0PTGh+gFIqBpgDXMZZAl0ptQBYABAXF9fWWt2D1nBgHfS7BAI6m12N29mYfoKHV2dQVtPILy/tz/9cLs20hHCUI4He0sBefdr2X4DFWmvb2cYBa62XA8sBkpKSTn8Pz1C0H04dg8m/NbsSt1JUVc8jqzPYkH6Sob3CePOOcQyPkWZaQrSFI4GeD/Ruth0LFJx2TBLwXlOYRwIzlVJWrfUqp1TpTrLWGx8Tpptbh5vQWrNybz5PrttPncXGoumD+PlF/aSZlhDnwJFA3wMMVEr1BY4DNwA3NT9Aa933u9dKqb8Da70yzMG4fx49BsJkfHRr8spqeeCDND4/VMK4+K4snTuC/t3lNpUQ56rVQNdaW5VS92CMXvEFVmitM5RSC5v2L2vnGt1H1UljibnLHjK7Epdmt2ve3nmUZzdloYDHZw/jlgl98JFmWkKcF4fGgGmt1wPrT/tci0Gutb7j/MtyUwc3Gh8HyXDFM8kuqmZJcipfHSvn4oTuPDVnOLFdpZmWEM4gg3rbqr4CGqpgw2Kw1v9wX9F+6BIHUUPNqc2FWWx2ln+WwwubDxHk78sfrx/JdWNipJmWEE4kgd4WdjuUHILCdDiwFnqOAN9mq8aH9oQxt0u/89OkH69g0cpUMk9UMjOxJ4/NGk730ACzyxLC40igt4W1zvhVddLYvmszdJJgOpN6i40XPjnE8s9yiAjxZ9ktY5k+vKfZZQnhsSTQ26KxFiz1RqAHRUiYn8Weo2UsXplKTkkNP0mK5cGZQwkP9mv9C4UQ50wCvS3qK8BuMwI9VIYltqS6wcqzGw/w9s5jxHYN4p2fTWDywEizyxLCK0igt0VtqfGx+qRxv1z8wNasIh5MSeNEZT13XhjP764YRIg00xKiw8jfNkfZbdBYBcrXuEKPGmZ2RS6jvKaRJ9ZmkvLNcQZEdWblwgsY26er2WUJ4XUk0B1lqTU62GgbVBfJFTrGtP31aSd5ZE06p2ot/PqyAdxz2QACOkkzLSHMIIHuKEsdoKGh0gh1L5/aX1RZz0Or0vkos5DEmHDenj+BodFhZpclhFeTQHdU3SljzHltmbHtpQ9Ftda8/1U+T6zLpNFq5/4Zg/nZ5L50kmZaQphOAt1RtaXQKRDqyo1tL7zlkldWy/0paXyRXcL4vhEsvS6RftJMSwiXIYHuCLsNGqshuBvUed8Vus2ueWvHUZ7blIWvj+LJa4dz0/g4aaYlhIuRQHdEYw2gjCn9deXG65Aos6vqEIcKq1iUnMo3uae4dFB3npqTSHSXILPLEkK0QALdEZa671/XlkHn7uDr2b91jVY7y7Yd5uUt2YQE+PKXn45i9qhoaaYlhAvz7FRylrry75tw1ZVBZ8++f56af4pFK1M5cLKKa0ZG88g1Q4nsLG0OhHB1EuiOqCsDv8Cm1+UQmWBuPe2k3mLjzx8f5PXPc+geGsDrtyUxbWgPs8sSQjhIAr01NqtxDz2kqR9JbZlHjnDZlVPKkuRUjpbWcuP43iyZMYTwIGmmJYQ7kUBvjaXm+9c2izGxyINuuVTVW1i64QDvfplLXEQw/7xrAhcMkGZaQrgjCfTWNNZ+v2DFd825POQKfcuBQh78IJ3CynrumtyX/7sigWB/+SMhhLuSv72tqT8Fvv7G68J046ObLzFXVtPI4x9msOrbAhJ6dObVmy9gdJw00xLC3Umgt6amaYYowNHtEBgOMWPMrekcaa35MPUEj67JoKrewm8uH8ivpgzAv5NM2xfCE0ign43NYiw5FxBivM77EuImgXK/ADxZYTTT2ry/kJGx4TwzbwKDe0ozLSE8iQT62TQ2eyB6Yp/RQjd2nHn1nAOtNe/tyeOpdfux2O08OHMI8yf3xVem7QvhcSTQz8ZSCzQF39EvwDcAeiaaWlJbHCutYUlyGjtzSpnYL4Kl140gPjLE7LKEEO1EAv1sasuhkz9oDcd2QGySWywMbbNr3tx+hOc/ysLPx4en5iRyw7je0kxLCA8ngX42dWXgFwSl2VBTBGPvMLuiVmWdNJpp7cs7xeWDo3hyznB6hUszLSG8gQT6mVgbwVoPAZ3h2HZAQdxE0HazK2tRo9XOq59m88rWbEID/XjxxtFcM6KXNNMSwotIoJ9J8xmix3ZAj2EQHAE1JebVdAbf5p1i8cpUsgqrmD0qmkeuGUZEiL/ZZQkhOpgE+pk01BjDE6uLoOQgjF9gdkU/Utdo448fZbFi+xGiQgP52+1JXD5EmmkJ4a0k0M+krsx4IHroM2O7z4Xm1nOaHYdLWJKcRm5ZLTdNiGPJjMGEBUozLSG8mUMzZJRS05VSWUqpbKXUkhb236yUSm36tUMpNdL5pQLLdlEAAA0hSURBVHawunJjhuix7RAeC13izK4IgMp6C/enpHLT61+iFPzr5xN5ak6ihLkQovUrdKWUL/AKMA3IB/YopdZorTObHXYEuERrXa6UmgEsBya0R8EdwtoAtkaw+kLBNzD8uu8bdJloc2YhD65Ko7iqgbsv7sf/Tk0gyN/X7LKEEC7CkVsu44FsrXUOgFLqPWA28N9A11rvaHb8LiDWmUV2uO9miObvAbvV9NstpdUNPPphJh/uK2Bwz1Bevy2JEbFdTK1JCOF6HAn0GCCv2XY+Z7/6/hmwoaUdSqkFwAKAuDjXuIXRosYa44r86HYICDNGuJhAa83qbwt47MMMqhus/N+0BBZe0l+aaQkhWuRIoLd0r0G3eKBSUzACfXJL+7XWyzFux5CUlNTie7iE2lLw6QR5uyDuAuN1Bys4VcdDq9LZcqCIUb278Oy8EST0CO3wOoQQ7sORpMoHejfbjgUKTj9IKTUCeAOYobUudU55JtDa6IFekg0NVdDngg799na75p+7c1m64QA2u+bhq4dyxwXx0kxLCNEqRwJ9DzBQKdUXOA7cANzU/AClVByQAtyqtT7o9Co7krWhqVXuLvDxg94d113xSEkNS5JT+fJIGRcO6MbTc0YQ1y24w76/EMK9tRroWmurUuoeYBPgC6zQWmcopRY27V8G/B7oBrzaNNXcqrVOar+y21FDFdi1cf88Zgz4Bf9wX2AXp9+Csdrs/O2LI/zp44P4d/Lh2bkjuD4pVqbtCyHaxKFk0lqvB9af9rllzV7fBdzl3NJMUnUCagqhqgBG/vT7z2u7cfUePdqpQxgzCypZnJxK2vEKpg3twZPXDqdHWKDT3l8I4T1kpmhzdhvUFMOJb43t5vfPa8shoh8EOOfBZIPVxstbsnnt08N0CfbjlZvGMDOxp1yVCyHOmQR6c/UVxpX4se3QfRCEdDc+b20wForu0scp32bvsXIWJ6eSXVTNdaNjePjqoXSVZlpCiPMkgd5cTTE0VkHRfkia//3n6yuNWy2+5/fbVdto5blNWfx9x1F6hQXy5p3jmDIo6jyLFkIIgwT6d7SGqpNwIs3Y/m52aP0p6BwFIZHn9fZfHCphSUoq+eV13DqxD4umDyJU+q8IIZxIAv07DVVG/5bcndC5h3G/3G4FmxUiE875QWhFnYU/rMvkP1/l0zcyhP/cPYnxfSOcXLwQQkigf6+u3Aj043th8NVGgNeeMsLc/9zGgm/KOMnDq9IprWnkF5f25zeXDyTQT5ppCSHahwT6dyqPQ3GWEerxF4Kl1hiDHt72PmPFVQ08uiaDdWknGNIrjL/dPo7E2PB2KFoIIb4ngQ7QWGs05MrbDf4h0HME1J2C2CTwcfyKWmtNytfHeXxtJnWNNu67chALLu6Hn6800xJCtD8JdDCGK9rtxv3z3hOhoRrCYow1RB10/FQdD6Skse1gMWPijGZaA6KkmZYQouNIoANUFkBFrjGiJW6i0V+yW3+HvtRu17zz5TGe2XAADTx6zVBunSTNtIQQHU8C3dporB+a/xUoX4gaYkwg8mt9+v3h4mqWJKey52g5Fw2M5Kk5ifSOkGZaQghzSKA3VAIKcndA9ChjHdHgbmf9EovNzuuf5/CXzYcI7OTDc/NGMG+sNNMSQphLAr3qpDFD9FQuDLnG6KQYEHbGw9OPV7A4OZWMgkqmD+vJ49cOIypUmmkJIczn3YFut0F1kbEQNECv0RDaE3x+PCql3mLjpS2HWLYth67B/rx28xhmJPbq4IKFEOLMvDvQGypB24zRLd36Q1AXCPlxb5WvjpaxKDmVnOIa5o6J5eGrh9AlWJppCSFci3cHenWJMQa9MB1G3QwoCPz+dktNg9FM662dR4kOD+Kt+eO5JKG7aeUKIcTZeG+gaw3VJ6EwzWiZGzMWQrqBr9Ewa9vBYh5ISaOgoo7bJ8Vz35WDCAnw3t8uIYTr896EaqwGaz3kfgnBkcZEotBenKpt5Im1+0n+Op9+3UN4/+5JJMVLMy0hhOvz3kCvKze6KebvhoFXgFJsONzIw2s/o7y2kV9N6c+vL5NmWkII9+G9gV5ZACWHwFrPqe5JLNkKG3PSGBYdxlvzxzEsWpppCSHci3cGuqUOGqrQebux+gZx+ad9qLJZWDx9MHdd1FeaaQkh3JJ3Bnp9BXmVNkIObmenJZF+Ef4s/UkS/WNkOTghhPvyukC32TX/2HWc9dsO8p9OZYQPvJB/T+6MT7QMRxRCuDevCvTsoioWJ6ex91g5L3T9Gl3vw+Sk0RAec85LzAkhhKvwikC32Oz8ddthXvwkm+AAX/50VQyz9n6D6pJorErUhr7nQgjhqjw+0NOPV3DfylT2n6jkqsRePDprGN1L9sAnR2HQwlabcQkhhLvw2ECvt9j4y+ZDvP55DhEh/iy7ZSzTh/c0du7ZZnyMHm30bmnDMnNCCOGqPDLQdx8pY0lyKjklNfw0qTcPzBxCeLAxpR+tIXszhPc2+p6H9jC3WCGEcBKPCvSqegvPbsziH7uOEds1iHd+NoHJAyN/eNCBdVDwNSTNN7YDZQKREMIzeEygb80q4sGUNE5U1jP/wr787soEgv1PO72GatiwGCIToN8UCIr4bzMuIYRwd24f6OU1jTyxNpOUb44zIKozKxdewNg+XVs+eNszUJkP8/4OtkYIi+7QWoUQoj05NMddKTVdKZWllMpWSi1pYb9SSr3YtD9VKTXG+aX+kNaatakFTP3TNtbsK+B/LhvAuv+ZfOYwL8yEXa/C6FuNh6F+QcaCFkII4SFavUJXSvkCrwDTgHxgj1JqjdY6s9lhM4CBTb8mAK81fWwXhZX1PLwqnY8yC0mMCeeduyYwpNdZhh5qDevuNYYnTnsc6ishqKsR6kII4SEcueUyHsjWWucAKKXeA2YDzQN9NvC21loDu5RSXZRSvbTWJ5xd8L6tyYRs+z33aVga4U9X5Y9KaeWLbI1QlgOzXjImETVUGf3PhRDCgzgS6DFAXrPtfH589d3SMTHADwJdKbUAWAAQFxfX1loBiIqMJC+oL8OiwwkJaMP48eHzYNQtxuvOPWTsuRDC4zgS6C01OdHncAxa6+XAcoCkpKQf7XdEr8RL6JV4ybl86ff8As/v64UQwgU58lA0H+jdbDsWKDiHY4QQQrQjRwJ9DzBQKdVXKeUP3ACsOe2YNcBtTaNdJgIV7XH/XAghxJm1estFa21VSt0DbAJ8gRVa6wyl1MKm/cuA9cBMIBuoBe5sv5KFEEK0xKGJRVrr9Rih3fxzy5q91sCvnFuaEEKItpDFM4UQwkNIoAshhIeQQBdCCA8hgS6EEB5CGc8zTfjGShUDx87xyyOBEieW4w7knL2DnLN3OJ9z7qO17t7SDtMC/Xwopb7SWieZXUdHknP2DnLO3qG9zlluuQghhIeQQBdCCA/hroG+3OwCTCDn7B3knL1Du5yzW95DF0II8WPueoUuhBDiNBLoQgjhIVw60F1xcer25sA539x0rqlKqR1KqZFm1OlMrZ1zs+PGKaVsSql5HVlfe3DknJVSlyqlvlVKZSiltnV0jc7mwJ/tcKXUh0qpfU3n7NZdW5VSK5RSRUqp9DPsd35+aa1d8hdGq97DQD/AH9gHDD3tmJnABowVkyYCX5pddwec8wVA16bXM7zhnJsdtwWj6+c8s+vugJ9zF4x1e+OatqPMrrsDzvkB4Jmm192BMsDf7NrP45wvBsYA6WfY7/T8cuUr9P8uTq21bgS+W5y6uf8uTq213gV0UUr16uhCnajVc9Za79Balzdt7sJYHcqdOfJzBvg1kAwUdWRx7cSRc74JSNFa5wJord39vB05Zw2EKqUU0Bkj0K0dW6bzaK0/wziHM3F6frlyoJ9p4em2HuNO2no+P8P4F96dtXrOSqkYYA6wDM/gyM85AeiqlPpUKbVXKXVbh1XXPhw555eBIRjLV6YBv9Fa2zumPFM4Pb8cWuDCJE5bnNqNOHw+SqkpGIE+uV0ran+OnPNfgMVaa5tx8eb2HDnnTsBY4HIgCNiplNqltT7Y3sW1E0fO+UrgW+AyoD/wsVLqc611ZXsXZxKn55crB7o3Lk7t0PkopUYAbwAztNalHVRbe3HknJOA95rCPBKYqZSyaq1XdUyJTufon+0SrXUNUKOU+gwYCbhroDtyzncCS7VxgzlbKXUEGAzs7pgSO5zT88uVb7l44+LUrZ6zUioOSAFudeOrteZaPWetdV+tdbzWOh5YCfzSjcMcHPuzvRq4SCnVSSkVDEwA9ndwnc7kyDnnYvyPBKVUD2AQkNOhVXYsp+eXy16hay9cnNrBc/490A14temK1arduFOdg+fsURw5Z631fqXURiAVsANvaK1bHP7mDhz8OT8B/F0plYZxO2Kx1tpt2+oqpf4FXApEKqXygUcAP2i//JKp/0II4SFc+ZaLEEKINpBAF0IIDyGBLoQQHkICXQghPIQEuhBCeAgJdCGE8BAS6EII4SH+HzT63lzXN+xbAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
],
"source": [
"from sklearn.metrics import roc_curve, roc_auc_score\n",
"\n",
"y_scores = model.predict_proba(X_test)\n",
"# calculate ROC curve\n",
"fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n",
"sns.lineplot([0, 1], [0, 1])\n",
"sns.lineplot(fpr, tpr)"
]
},
{
"source": [
"auc = roc_auc_score(y_test,y_scores[:,1])\n",
"print(auc)"
],
"cell_type": "code",
"metadata": {},
"execution_count": 18,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"0.6976998904709748\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
]
}