You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ML-For-Beginners/translations/zh/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb

172 lines
5.7 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
},
"orig_nbformat": 4,
"kernelspec": {
"name": "python3",
"display_name": "Python 3.7.0 64-bit ('3.7')"
},
"interpreter": {
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
},
"coopTranslator": {
"original_hash": "033cb89c85500224b3c63fd04f49b4aa",
"translation_date": "2025-09-03T20:58:26+00:00",
"source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb",
"language_code": "zh"
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import time\n",
"import ast"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def replace_address(row):\n",
" if \"Netherlands\" in row[\"Hotel_Address\"]:\n",
" return \"Amsterdam, Netherlands\"\n",
" elif \"Barcelona\" in row[\"Hotel_Address\"]:\n",
" return \"Barcelona, Spain\"\n",
" elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n",
" return \"London, United Kingdom\"\n",
" elif \"Milan\" in row[\"Hotel_Address\"]: \n",
" return \"Milan, Italy\"\n",
" elif \"France\" in row[\"Hotel_Address\"]:\n",
" return \"Paris, France\"\n",
" elif \"Vienna\" in row[\"Hotel_Address\"]:\n",
" return \"Vienna, Austria\" \n",
" else:\n",
" return row.Hotel_Address\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Load the hotel reviews from CSV\n",
"start = time.time()\n",
"df = pd.read_csv('../../data/Hotel_Reviews.csv')\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# dropping columns we will not use:\n",
"df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Replace all the addresses with a shortened, more useful form\n",
"df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# Drop `Additional_Number_of_Scoring`\n",
"df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n",
"# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n",
"df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n",
"df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Process the Tags into new columns\n",
"# The file Hotel_Reviews_Tags.py, identifies the most important tags\n",
"# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n",
"# Family with young children, Family with older children, With a pet\n",
"df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n",
"df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n",
"df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n",
"df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n",
"df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n",
"df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n",
"df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n",
"df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# No longer need any of these columns\n",
"df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Saving results to Hotel_Reviews_Filtered.csv\n",
"Filtering took 23.74 seconds\n"
]
}
],
"source": [
"# Saving new data file with calculated columns\n",
"print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n",
"df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n",
"end = time.time()\n",
"print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**免责声明** \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n"
]
}
]
}